[1] |
Fahn A. 2000. US. Patent No. 9780120059317 |
[2] |
Mauricio R, Rausher MD. 1997. Experimental manipulation of putative selective agents provides evidence for the role of natural enemies in the evolution of plant defense. Evolution 51:1435−44 doi: 10.2307/2411196 |
[3] |
Friedman M, Levin CE. 1998. Dehydrotomatine content in tomatoes. Journal of Agricultural and Food Chemistry 46:4571−76 doi: 10.1021/jf9804589 |
[4] |
Schilmiller AL, Last RL, Pichersky E. 2008. Harnessing plant trichome biochemistry for the production of useful compounds. The Plant Journal 54:702−11 doi: 10.1111/j.1365-313X.2008.03432.x |
[5] |
Kang JH, McRoberts J, Shi F, Moreno JE, Jones AD, et al. 2014. The flavonoid biosynthetic enzyme chalcone isomerase modulates terpenoid production in glandular trichomes of tomato. Plant Physiology 164:1161−74 doi: 10.1104/pp.113.233395 |
[6] |
Hare JD, Elle E, van Dam NM. 2003. Costs of glandular trichomes in Datura wrightii: a three-year study. Evolution 57:793−805 doi: 10.1111/j.0014-3820.2003.tb00291.x |
[7] |
Zhou Z, Tan H, Li Q, Li Q, Wang Y, et al. 2020. TRICHOME AND ARTEMISININ REGULATOR 2 positively regulates trichome development and artemisinin biosynthesis in Artemisia annua. New Phytologist 228:932−45 doi: 10.1111/nph.16777 |
[8] |
Happyana N, Agnolet S, Muntendam R, Van Dam A, Schneider B, et al. 2013. Analysis of cannabinoids in laser-microdissected trichomes of medicinal Cannabis sativa using LCMS and cryogenic NMR. Phytochemistry 87:51−59 doi: 10.1016/j.phytochem.2012.11.001 |
[9] |
Gershenzon J, Dudareva N. 2007. The function of terpene natural products in the natural world. Nature Chemical Biology 3:408−14 doi: 10.1038/nchembio.2007.5 |
[10] |
Tholl D. 2015. Biosynthesis and biological functions of terpenoids in plants. Advances in Biochemical Engineering/Biotechnology 148:63−106 doi: 10.1007/10_2014_295 |
[11] |
De Luca V, Salim V, Atsumi SM, Yu F. 2012. Mining the biodiversity of plants: a revolution in the making. Science 336:1658−61 doi: 10.1126/science.1217410 |
[12] |
Perazza D, Herzog M, Hülskamp M, Brown S, Dorne AM, et al. 1999. Trichome cell growth in Arabidopsis thaliana can be derepressed by mutations in at least five genes. Genetics 152:461−76 doi: 10.1093/genetics/152.1.461 |
[13] |
Lieckfeldt E, Simon-Rosin U, Kose F, Zoeller D, Schliep M, et al. 2008. Gene expression profiling of single epidermal, basal and trichome cells of Arabidopsis thaliana. Journal of Plant Physiology 165:1530−44 doi: 10.1016/j.jplph.2007.06.017 |
[14] |
Li C, Jing S, Luo S, Shi W, Hua J, et al. 2013. Peltate glandular trichomes of Colquhounia coccinea var. mollis harbor a new class of defensive sesterterpenoids. Organic Letters 15:1694−97 |
[15] |
Balcke GU, Bennewitz S, Zabel S, Tissier A. 2014. Isoprenoid and metabolite profiling of plant trichomes. Methods in Molecular Biology 1153:189−202 doi: 10.1007/978-1-4939-0606-2_13 |
[16] |
Huebbers JW, Büttgen K, Panstruga R. 2022. Efficient Isolation and Purification of High-Quality Arabidopsis thaliana Trichomes. Current Protocols 2:e541 doi: 10.1002/cpz1.541 |
[17] |
Han G, Li Y, Yang Z, Wang C, Zhang Y, et al. 2022. Molecular mechanisms of plant trichome development. Frontiers in Plant Science 13:910228 doi: 10.3389/fpls.2022.910228 |
[18] |
Conneely LJ, Berkowitz O, Lewsey MG. 2022. Emerging trends in genomic and epigenomic regulation of plant specialised metabolism. Phytochemistry 203:113427 doi: 10.1016/j.phytochem.2022.113427 |
[19] |
Xie Q, Xiong C, Yang Q, Zheng F, Larkin RM, et al. 2022. A novel regulatory complex mediated by Lanata (Ln) controls multicellular trichome formation in tomato. New Phytologist 236:2294−310 doi: 10.1111/nph.18492 |
[20] |
Zheng F, Cui L, Li C, Xie Q, Ai G, et al. 2022. Hair interacts with SlZFP8-like to regulate the initiation and elongation of trichomes by modulating SlZFP6 expression in tomato. Journal of Experimental Botany 73:228−44 doi: 10.1093/jxb/erab417 |
[21] |
Dong M, Xue S, Bartholomew ES, Zhai X, Sun L, et al. 2022. Transcriptomic and functional analysis provides molecular insights into multicellular trichome development. Plant Physiology 189:301−14 doi: 10.1093/plphys/kiac050 |
[22] |
Fiesel PD, Parks HM, Last RL, Barry CS. 2022. Fruity, sticky, stinky, spicy, bitter, addictive, and deadly: evolutionary signatures of metabolic complexity in the Solanaceae. Natural Product Reports 39:1438−64 doi: 10.1039/D2NP00003B |
[23] |
Maffei ME. 2010. Sites of synthesis, biochemistry and functional role of plant volatiles. South African Journal of Botany 76:612−31 doi: 10.1016/j.sajb.2010.03.003 |
[24] |
Fobes JF, Mudd JB, Marsden MP. 1985. Epicuticular lipid accumulation on the leaves of Lycopersicon pennellii (Corr.) D'Arcy and Lycopersicon esculentum Mill. Plant Physiology 77:567−70 doi: 10.1104/pp.77.3.567 |
[25] |
Tissier A. 2012. Glandular trichomes: what comes after expressed sequence tags? The Plant Journal 70:51−68 doi: 10.1111/j.1365-313X.2012.04913.x |
[26] |
Luckwill LC. 1943. The genus Lycopersicon; an historical, biological, and taxonomic survey of the wild and cultivated tomatoes. Aberdeen: The University Press. pp. 1-44. |
[27] |
Bennewitz S, Bergau N, Tissier A. 2018. QTL mapping of the shape of type VI glandular trichomes in tomato. Frontiers in Plant Science 9:1421 doi: 10.3389/fpls.2018.01421 |
[28] |
Bergau N, Bennewitz S, Syrowatka F, Hause G, Tissier A. 2015. The development of type VI glandular trichomes in the cultivated tomato Solanum lycopersicum and a related wild species S. habrochaites. BMC Plant Biology 15:289 doi: 10.1186/s12870-015-0678-z |
[29] |
Xue S, Dong M, Liu X, Xu S, Pang J, et al. 2019. Classification of fruit trichomes in cucumber and effects of plant hormones on type II fruit trichome development. Planta 249:407−16 doi: 10.1007/s00425-018-3004-9 |
[30] |
Yamamoto Y, Hayashi M, Kanamaru T, Watanabe T, Mametsuka S, et al. 1989. Studies on bloom on the surface of cucumber [Cucumis sativus] fruits, 2: relation between the degree of bloom occurrence and contents of mineral elements. Bulletin of the Fukuoka Agricultural Research Center 9:1−6 |
[31] |
Samuels AL, Glass ADM, Ehret DL, Menzies JG. 1993. The effects of silicon supplementation on cucumber fruit: changes in surface characteristics. Annals of Botany 72:433−40 doi: 10.1006/anbo.1993.1129 |
[32] |
Chen C, Yin S, Liu X, Liu B, Yang S, et al. 2016. The WD-repeat protein CsTTG1 regulates fruit wart formation through interaction with the homeodomain-leucine zipper I protein Mict. Plant Physiology 171:1156−68 doi: 10.1104/pp.16.00112 |
[33] |
Liu J, Wang H, Liu M, Liu J, Liu S, et al. 2021. Hairiness gene regulated multicellular, non-glandular trichome formation in pepper species. Frontiers in Plant Science 12:784755 doi: 10.3389/fpls.2021.784755 |
[34] |
Chalvin C, Drevensek S, Dron M, Bendahmane A, Boualem A. 2020. Genetic control of glandular trichome development. Trends in Plant Science 25:477−87 doi: 10.1016/j.tplants.2019.12.025 |
[35] |
Feng Z, Bartholomew ES, Liu Z, Cui Y, Dong Y, et al. 2021. Glandular trichomes: new focus on horticultural crops. Horticulture Research 8:158 doi: 10.1038/s41438-021-00592-1 |
[36] |
Yang C, Li H, Zhang J, Luo Z, Gong P, et al. 2011. A regulatory gene induces trichome formation and embryo lethality in tomato. Proceedings of the National Academy of Sciences of the United States of America 108:11836−41 doi: 10.1073/pnas.1100532108 |
[37] |
Gao S, Gao Y, Xiong C, Yu G, Chang J, et al. 2017. The tomato B-type cyclin gene, SlCycB2, plays key roles in reproductive organ development, trichome initiation, terpenoids biosynthesis and Prodenia litura defense. Plant Science 262:103−14 doi: 10.1016/j.plantsci.2017.05.006 |
[38] |
Chang J, Yu T, Yang Q, Li C, Xiong C, et al. 2018. Hair, encoding a single C2H2 zinc-finger protein, regulates multicellular trichome formation in tomato. The Plant Journal 96:90−102 doi: 10.1111/tpj.14018 |
[39] |
Xu J, van Herwijnen ZO, Dräger DB, Sui C, Haring MA, et al. 2018. SlMYC1 regulates type VI glandular trichome formation and terpene biosynthesis in tomato glandular cells. The Plant Cell 30:2988−3005 doi: 10.1105/tpc.18.00571 |
[40] |
Ewas M, Gao Y, Ali F, Nishawy EM, Shahzad R, et al. 2017. RNA-seq reveals mechanisms of SlMX1 for enhanced carotenoids and terpenoids accumulation along with stress resistance in tomato. Science Bulletin 62:476−85 doi: 10.1016/j.scib.2017.03.018 |
[41] |
Galdon-Armero J, Arce-Rodriguez L, Downie M, Li J, Martin C. 2020. A scanning electron micrograph-based resource for identification of loci involved in epidermal development in tomato: elucidation of a new function for the Mixta-like transcription factor in leaves. The Plant Cell 32:1414−33 doi: 10.1105/tpc.20.00127 |
[42] |
Ying S, Su M, Wu Y, Zhou L, Fu R, et al. 2020. Trichome regulator SlMIXTA-like directly manipulates primary metabolism in tomato fruit. Plant Biotechnology Journal 18:354−63 doi: 10.1111/pbi.13202 |
[43] |
Liao X, Wang J, Zhu S, Xie Q, Wang L, et al. 2020. Transcriptomic and functional analyses uncover the regulatory role of lncRNA000170 in tomato multicellular trichome formation. The Plant Journal 104:18−29 doi: 10.1111/tpj.14902 |
[44] |
Yu X, Chen G, Tang B, Zhang J, Zhou S, et al. 2018. The Jasmonate ZIM-domain protein gene SlJAZ2 regulates plant morphology and accelerates flower initiation in Solanum lycopersicum plants. Plant Science 267:65−73 doi: 10.1016/j.plantsci.2017.11.008 |
[45] |
Hua B, Chang J, Wu M, Xu Z, Zhang F, et al. 2021. Mediation of JA signalling in glandular trichomes by the woolly/SlMYC1 regulatory module improves pest resistance in tomato. Plant Biotechnology Journal 19:375−93 doi: 10.1111/pbi.13473 |
[46] |
Hua B, Chang J, Han X, Xu Z, Hu S, et al. 2022. H and HL synergistically regulate jasmonate-triggered trichome formation in tomato. Horticulture Research 9:uhab080 doi: 10.1093/hr/uhab080 |
[47] |
Hua B, Chang J, Xu Z, Han X, Xu M, et al. 2021. HOMEODOMAIN PROTEIN8 mediates jasmonate-triggered trichome elongation in tomato. New Phytologist 230:1063−77 doi: 10.1111/nph.17216 |
[48] |
Chen Y, Su D, Li J, Ying S, Deng H, et al. 2020. Overexpression of bHLH95, a basic helix-loop-helix transcription factor family member, impacts trichome formation via regulating gibberellin biosynthesis in tomato. Journal of Experimental Botany 71:3450−62 doi: 10.1093/jxb/eraa114 |
[49] |
Yuan Y, Xu X, Luo Y, Gong Z, Hu X, et al. 2021. R2R3 MYB-dependent auxin signalling regulates trichome formation, and increased trichome density confers spider mite tolerance on tomato. Plant Biotechnology Journal 19:138−52 doi: 10.1111/pbi.13448 |
[50] |
Gong Z, Luo Y, Zhang W, Jian W, Zhang L, et al. 2021. A SlMYB75-centred transcriptional cascade regulates trichome formation and sesquiterpene accumulation in tomato. Journal of Experimental Botany 72:3806−20 doi: 10.1093/jxb/erab086 |
[51] |
Deng W, Yang Y, Ren Z, Audran-Delalande C, Mila I, et al. 2012. The tomato SlIAA15 is involved in trichome formation and axillary shoot development. New Phytologist 194:379−90 doi: 10.1111/j.1469-8137.2012.04053.x |
[52] |
Li L, Zhao Y, McCaig BC, Wingerd BA, Wang J, et al. 2004. The tomato homolog of CORONATINE-INSENSITIVE1 is required for the maternal control of seed maturation, jasmonate-signaled defense responses, and glandular trichome development. The Plant Cell 16:126−43 doi: 10.1105/tpc.017954 |
[53] |
Pan Y, Bo K, Cheng Z, Weng Y. 2015. The loss-of-function GLABROUS 3 mutation in cucumber is due to LTR-retrotransposon insertion in a class IV HD-ZIP transcription factor gene CsGL3 that is epistatic over CsGL1. BMC Plant Biology 15:302 doi: 10.1186/s12870-015-0693-0 |
[54] |
Wang Y, Nie J, Chen H, Guo C, Pan J, et al. 2016. Identification and mapping of Tril, a homeodomain-leucine zipper gene involved in multicellular trichome initiation in Cucumis sativus. Theoretical and Applied Genetics 129:305−16 doi: 10.1007/s00122-015-2628-4 |
[55] |
Liu X, Bartholomew E, Cai Y, Ren H. 2016. Trichome-related mutants provide a new perspective on multicellular trichome initiation and development in cucumber (Cucumis sativus L). Frontiers in Plant Science 7:1187 doi: 10.3389/fpls.2016.01187 |
[56] |
Li Q, Cao C, Zhang C, Zheng S, Wang Z, et al. 2015. The identification of Cucumis sativus Glabrous 1 (CsGL1) required for the formation of trichomes uncovers a novel function for the homeodomain-leucine zipper I gene. Journal of Experimental Botany 66:2515−26 doi: 10.1093/jxb/erv046 |
[57] |
Zhao J, Pan J, Guan Y, Zhang W, Bie B, et al. 2015. Micro-trichome as a class I homeodomain-leucine zipper gene regulates multicellular trichome development in Cucumis sativus. Journal of Integrative Plant Biology 57:925−35 doi: 10.1111/jipb.12345 |
[58] |
Guo P, Chang H, Li Q, Wang L, Ren Z, et al. 2020. Transcriptome profiling reveals genes involved in spine development during CsTTG1-regulated pathway in cucumber (Cucumis sativus L.). Plant Science 291:110354 doi: 10.1016/j.plantsci.2019.110354 |
[59] |
Zhang Y, Shen J, Bartholomew ES, Dong M, Chen S, et al. 2021. TINY BRANCHED HAIR functions in multicellular trichome development through an ethylene pathway in Cucumis sativus L. The Plant Journal 106:753−65 doi: 10.1111/tpj.15198 |
[60] |
Zhang L, Pan J, Wang G, Du H, He H, et al. 2019. Cucumber CsTRY negatively regulates anthocyanin biosynthesis and trichome formation when expressed in tobacco. Frontiers in Plant Science 10:1232 doi: 10.3389/fpls.2019.01232 |
[61] |
Yang S, Cai Y, Liu X, Dong M, Zhang Y, et al. 2018. A CsMYB6-CsTRY module regulates fruit trichome initiation in cucumber. Journal of Experimental Botany 69:1887−902 doi: 10.1093/jxb/ery047 |
[62] |
Chen C, Liu M, Jiang L, Liu X, Zhao J, et al. 2014. Transcriptome profiling reveals roles of meristem regulators and polarity genes during fruit trichome development in cucumber (Cucumis sativus L.). Journal of Experimental Botany 65:4943−58 doi: 10.1093/jxb/eru258 |
[63] |
Yang X, Zhang W, He H, Nie J, Bie B, et al. 2014. Tuberculate fruit gene Tu encodes a C2H2 zinc finger protein that is required for the warty fruit phenotype in cucumber (Cucumis sativus L.). The Plant Journal 78:1034−46 doi: 10.1111/tpj.12531 |
[64] |
Wang Z, Wang L, Han L, Cheng Z, Liu X, et al. 2021. HECATE2 acts with GLABROUS3 and Tu to boost cytokinin biosynthesis and regulate cucumber fruit wart formation. Plant Physiology 187:1619−35 doi: 10.1093/plphys/kiab377 |
[65] |
Yang S, Wang Y, Zhu H, Zhang M, Wang D, et al. 2022. A novel HD-Zip I/C2H2-ZFP/WD-repeat complex regulates the size of spine base in cucumber. New Phytologist 233:2643−58 doi: 10.1111/nph.17967 |
[66] |
Kim HJ, Han JH, Kwon JK, Park M, Kim BD, et al. 2010. Fine mapping of pepper trichome locus 1 controlling trichome formation in Capsicum annuum L. CM334. Theoretical and Applied Genetics 120:1099−106 doi: 10.1007/s00122-009-1237-5 |
[67] |
Chunthawodtiporn J, Hill T, Stoffel K, Van Deynze A. 2018. Quantitative trait loci controlling fFruit size and other horticultural traits in bell pepper (Capsicum annuum). The Plant Genome 11:160125 doi: 10.3835/plantgenome2016.12.0125 |
[68] |
Gao S, Li N, Niran J, Wang F, Yin Y, et al. 2021. Transcriptome profiling of Capsicum annuum using Illumina- and PacBio SMRT-based RNA-Seq for in-depth understanding of genes involved in trichome formation. Scientific Reports 11:10164 doi: 10.1038/s41598-021-89619-0 |
[69] |
Ewas M, Gao Y, Wang S, Liu X, Zhang H, et al. 2016. Manipulation of SlMXl for enhanced carotenoids accumulation and drought resistance in tomato. Science Bulletin 61:1413−18 doi: 10.1007/s11434-016-1108-9 |
[70] |
Nadakuduti SS, Pollard M, Kosma DK, Allen C Jr, Ohlrogge JB, et al. 2012. Pleiotropic phenotypes of the sticky peel mutant provide new insight into the role of CUTIN DEFICIENT2 in epidermal cell function in tomato. Plant Physiology 159:945−60 doi: 10.1104/pp.112.198374 |
[71] |
Zhang Z, Chen X, Guan X, Liu Y, Chen H, et al. 2014. A genome-wide survey of homeodomain-leucine zipper genes and analysis of cold-responsive HD-Zip I members' expression in tomato. Bioscience, Biotechnology and Biochemistry 78:1337−49 doi: 10.1080/09168451.2014.923292 |
[72] |
Xie Q, Gao Y, Li J, Yang Q, Qu X, et al. 2020. The HD-Zip IV transcription factor SlHDZIV8 controls multicellular trichome morphology by regulating the expression of Hairless-2. Journal of Experimental Botany 71:7132−45 doi: 10.1093/jxb/eraa428 |
[73] |
Cui J, Miao H, Ding L, Wehner T, Liu P, et al. 2016. A new glabrous gene (csgl3) identified in trichome development in cucumber (Cucumis sativus L.). PLoS ONE 11:e0148422 doi: 10.1371/journal.pone.0148422 |
[74] |
Pan J, Zhang L, Chen G, Wen H, Chen Y, et al. 2021. Study of micro-trichome (mict) reveals novel connections between transcriptional regulation of multicellular trichome development and specific metabolism in cucumber. Horticulture Research 8:21 doi: 10.1038/s41438-020-00456-0 |
[75] |
Feng Z, Sun L, Dong M, Fan S, Shi K, et al. 2023. Novel players in organogenesis and flavonoid biosynthesis in cucumber glandular trichomes. Plant Physiology 192:2723−36 doi: 10.1093/plphys/kiad236 |
[76] |
Yang S, Miao H, Zhang S, Cheng Z, Zhou J, et al. 2011. Genetic analysis and mapping of gl-2 gene in cucumber (Cucumis sativus L.). Acta Horticulturae Sinica 38:1685−92 |
[77] |
Zhang L, Lv D, Pan J, Zhang K, Wen H, et al. 2021. A SNP of HD-ZIP I transcription factor leads to distortion of trichome morphology in cucumber (Cucumis sativus L.). BMC Plant Biology 21:182 doi: 10.1186/s12870-021-02955-1 |
[78] |
Li R, Wang X, Zhang S, Liu X, Zhou Z, et al. 2021. Two zinc-finger proteins control the initiation and elongation of long stalk trichomes in tomato. Journal of Genetics and Genomics 48:1057−69 doi: 10.1016/j.jgg.2021.09.001 |
[79] |
Kang JH, Campos ML, Zemelis-Durfee S, Al-Haddad JM, Jones AD, et al. 2016. Molecular cloning of the tomato Hairless gene implicates actin dynamics in trichome-mediated defense and mechanical properties of stem tissue. Journal of Experimental Botany 67:5313−24 doi: 10.1093/jxb/erw292 |
[80] |
Chun JI, Kim SM, Jeong NR, Kim SH, Jung C, et al. 2022. Tomato ARPC1 regulates trichome morphology and density and terpene biosynthesis. Planta 256:38 doi: 10.1007/s00425-022-03955-7 |
[81] |
Liu S, Fan L, Liu Z, Yang X, Zhang Z, et al. 2020. A Pd1-Ps-P1 feedback loop controls pubescence density in soybean. Molecular Plant 13:1768−83 doi: 10.1016/j.molp.2020.10.004 |
[82] |
Wu R, Lev-Yadun S, Sun L, Sun H, Song B. 2021. Higher elevations tend to have higher proportion of plant species with glandular trichomes. Frontiers in Plant Science 12:632464 doi: 10.3389/fpls.2021.632464 |
[83] |
Yadav RK, Sangwan RS, Sabir F, Srivastava AK, Sangwan NS. 2014. Effect of prolonged water stress on specialized secondary metabolites, peltate glandular trichomes, and pathway gene expression in Artemisia annua L. Plant Physiology and Biochemistry 74:70−83 doi: 10.1016/j.plaphy.2013.10.023 |
[84] |
Yan A, Pan J, An L, Gan Y, Feng H. 2012. The responses of trichome mutants to enhanced ultraviolet-B radiation in Arabidopsis thaliana. Journal of Photochemistry and Photobiology B: Biology 113:29−35 doi: 10.1016/j.jphotobiol.2012.04.011 |
[85] |
Chang J, Xu Z, Li M, Yang M, Qin H, et al. 2019. Spatiotemporal cytoskeleton organizations determine morphogenesis of multicellular trichomes in tomato. PLoS Genetics 15:e1008438 doi: 10.1371/journal.pgen.1008438 |
[86] |
Tang K, Yang S, Feng X, Wu T, Leng J, et al. 2020. GmNAP1 is essential for trichome and leaf epidermal cell development in soybean. Plant Molecular Biology 103:609−21 doi: 10.1007/s11103-020-01013-y |
[87] |
Lashbrooke J, Adato A, Lotan O, Alkan N, Tsimbalist T, et al. 2015. The tomato MIXTA-like transcription factor coordinates fruit epidermis conical cell development and cuticular lipid biosynthesis and assembly. Plant Physiology 169:2553−71 doi: 10.1104/pp.15.01145 |
[88] |
Xiong C, Xie Q, Yang Q, Sun P, Gao S, et al. 2020. WOOLLY, interacting with MYB transcription factor MYB31, regulates cuticular wax biosynthesis by modulating CER6 expression in tomato. The Plant Journal 103:323−37 doi: 10.1111/tpj.14733 |
[89] |
Berhin A, Nawrath C, Hachez C. 2022. Subtle interplay between trichome development and cuticle formation in plants. New Phytologist 233:2036−46 doi: 10.1111/nph.17827 |
[90] |
Wu M, Chang J, Han X, Shen J, Yang L, et al. 2023. A HD-ZIP transcription factor specifies fates of multicellular trichomes via dosage-dependent mechanisms in tomato. Developmental Cell 58:278−288.E5 doi: 10.1016/j.devcel.2023.01.009 |
[91] |
McDowell ET, Kapteyn J, Schmidt A, Li C, Kang JH, et al. 2011. Comparative functional genomic analysis of Solanum glandular trichome types. Plant Physiology 155:524−39 doi: 10.1104/pp.110.167114 |
[92] |
Besser K, Harper A, Welsby N, Schauvinhold I, Slocombe S, et al. 2009. Divergent regulation of terpenoid metabolism in the trichomes of wild and cultivated tomato species. Plant Physiology 149:499−514 doi: 10.1104/pp.108.126276 |
[93] |
Fridman E, Wang J, Iijima Y, Froehlich JE, Gang DR, et al. 2005. Metabolic, genomic, and biochemical analyses of glandular trichomes from the wild tomato species Lycopersicon hirsutum identify a key enzyme in the biosynthesis of methylketones. The Plant Cell 17:1252−67 doi: 10.1105/tpc.104.029736 |
[94] |
Luu VT, Weinhold A, Ullah C, Dressel S, Schoettner M, et al. 2017. O-Acyl sugars protect a wild tobacco from both native fungal pathogens and a specialist herbivore. Plant Physiology 174:370−86 doi: 10.1104/pp.16.01904 |
[95] |
Henry LK, Thomas ST, Widhalm JR, Lynch JH, Davis TC, et al. 2018. Contribution of isopentenyl phosphate to plant terpenoid metabolism. Nature Plants 4:721−29 doi: 10.1038/s41477-018-0220-z |
[96] |
Sugimoto K, Zager JJ, Aubin BS, Lange BM, Howe GA. 2022. Flavonoid deficiency disrupts redox homeostasis and terpenoid biosynthesis in glandular trichomes of tomato. Plant Physiology 188:1450−68 doi: 10.1093/plphys/kiab488 |
[97] |
Tholl D, Lee S. 2011. Terpene specialized metabolism in Arabidopsis thaliana. The Arabidopsis Book 9:e0143 doi: 10.1199/tab.0143 |
[98] |
Vranová E, Coman D, Gruissem W. 2013. Network analysis of the MVA and MEP pathways for isoprenoid synthesis. Annual Review of Plant Biology 64:665−700 doi: 10.1146/annurev-arplant-050312-120116 |
[99] |
Schilmiller AL, Schauvinhold I, Larson M, Xu R, Charbonneau AL, et al. 2009. Monoterpenes in the glandular trichomes of tomato are synthesized from a neryl diphosphate precursor rather than geranyl diphosphate. Proceedings of the National Academy of Sciences of the United States of America 106:10865−70 doi: 10.1073/pnas.0904113106 |
[100] |
Bleeker PM, Spyropoulou EA, Diergaarde PJ, Volpin H, De Both MTJ, et al. 2011. RNA-seq discovery, functional characterization, and comparison of sesquiterpene synthases from Solanum lycopersicum and Solanum habrochaites trichomes. Plant Molecular Biology 77:323 doi: 10.1007/s11103-011-9813-x |
[101] |
Spyropoulou EA, Haring MA, Schuurink RC. 2014. RNA sequencing on Solanum lycopersicum trichomes identifies transcription factors that activate terpene synthase promoters. BMC Genomics 15:402 doi: 10.1186/1471-2164-15-402 |
[102] |
Sallaud C, Rontein D, Onillon S, Jabès F, Duffé P, et al. 2009. A novel pathway for sesquiterpene biosynthesis from Z, Z-farnesyl pyrophosphate in the wild tomato Solanum habrochaites. The Plant Cell 21:301−17 doi: 10.1105/tpc.107.057885 |
[103] |
Walters DS, Steffens JC. 1990. Branched chain amino acid metabolism in the biosynthesis of Lycopersicon pennellii glucose esters. Plant Physiology 93:1544−51 doi: 10.1104/pp.93.4.1544 |
[104] |
Schilmiller AL, Moghe GD, Fan P, Ghosh B, Ning J, et al. 2015. Functionally divergent alleles and duplicated Loci encoding an acyltransferase contribute to acylsugar metabolite diversity in Solanum trichomes. The Plant Cell 27:1002−17 doi: 10.1105/tpc.15.00087 |
[105] |
Slocombe SP, Schauvinhold I, McQuinn RP, Besser K, Welsby NA, et al. 2008. Transcriptomic and reverse genetic analyses of branched-chain fatty acid and acyl sugar production in Solanum pennellii and Nicotiana benthamiana. Plant Physiology 148:1830−46 doi: 10.1104/pp.108.129510 |
[106] |
Mandal S, Ji W, McKnight TD. 2020. Candidate gene networks for acylsugar metabolism and plant defense in wild tomato Solanum pennellii. The Plant Cell 32:81−99 doi: 10.1105/tpc.19.00552 |
[107] |
Leong BJ, Lybrand DB, Lou YR, Fan P, Schilmiller AL, et al. 2019. Evolution of metabolic novelty: a trichome-expressed invertase creates specialized metabolic diversity in wild tomato. Science Advances 5:eaaw3754 doi: 10.1126/sciadv.aaw3754 |
[108] |
de Souza LP, Garbowicz K, Brotman Y, Tohge T, Fernie AR. 2020. The acetate pathway supports flavonoid and lipid biosynthesis in Arabidopsis. Plant Physiology 182:857−69 doi: 10.1104/pp.19.00683 |
[109] |
Tohge T, de Souza LP, Fernie AR. 2017. Current understanding of the pathways of flavonoid biosynthesis in model and crop plants. Journal of Experimental Botany 68:4013−28 doi: 10.1093/jxb/erx177 |
[110] |
Saito K, Yonekura-Sakakibara K, Nakabayashi R, Higashi Y, Yamazaki M, et al. 2013. The flavonoid biosynthetic pathway in Arabidopsis: structural and genetic diversity. Plant Physiology and Biochemistry 72:21−34 doi: 10.1016/j.plaphy.2013.02.001 |
[111] |
Fernie AR. 2019. Evolution: an early role for flavonoids in defense against oomycete infection. Current Biology 29:R688−R690 doi: 10.1016/j.cub.2019.06.028 |
[112] |
Zhao J. 2015. Flavonoid transport mechanisms: how to go, and with whom. Trends in Plant Science 20:576−85 doi: 10.1016/j.tplants.2015.06.007 |
[113] |
Maluf WR, Barbosa LV, Santa-Cecília LVC. 1997. 2-Tridecanone-mediated mechanisms of resistance to the South American tomato pinworm Scrobipalpuloides absoluta (Meyrick, 1917) (Lepidoptera-Gelechiidae) in Lycopersicon spp. Euphytica 93:189−94 |
[114] |
Williams WG, Kennedy GG, Yamamoto RT, Thacker JD, Bordner J. 1980. 2-Tridecanone: a naturally occurring insecticide from the wild tomato Lycopersicon hirsutum f. glabratum. Science 207:888−89 doi: 10.1126/science.207.4433.888 |
[115] |
Antonious GF, Dahlman DL, Hawkins LM. 2003. Insecticidal and acaricidal performance of methyl ketones in wild tomato leaves. Bulletin of Environmental Contamination and Toxicology 71:400−7 doi: 10.1007/s00128-003-0178-y |
[116] |
Yu G, Nguyen TT, Guo Y, Schauvinhold I, Auldridge ME, et al. 2010. Enzymatic functions of wild tomato methylketone synthases 1 and 2. Plant Physiology 154:67−77 doi: 10.1104/pp.110.157073 |
[117] |
Yu G, Pichersky E. 2014. Heterologous expression of methylketone synthase1 and methylketone synthase2 leads to production of methylketones and myristic acid in transgenic plants. Plant Physiology 164:612−22 doi: 10.1104/pp.113.228502 |
[118] |
Fan P, Miller AM, Liu X, Jones AD, Last RL. 2017. Evolution of a flipped pathway creates metabolic innovation in tomato trichomes through BAHD enzyme promiscuity. Nature Communications 8:2080 doi: 10.1038/s41467-017-02045-7 |
[119] |
Fan P, Wang P, Lou YR, Leong BJ, Moore BM, et al. 2020. Evolution of a plant gene cluster in Solanaceae and emergence of metabolic diversity. eLife 9:e56717 doi: 10.7554/eLife.56717 |
[120] |
Therezan R, Kortbeek R, Vendemiatti E, Legarrea S, de Alencar SM, et al. 2021. Introgression of the sesquiterpene biosynthesis from Solanum habrochaites to cultivated tomato offers insights into trichome morphology and arthropod resistance. Planta 254:11 doi: 10.1007/s00425-021-03651-y |
[121] |
Yang C, Marillonnet S, Tissier A. 2021. The scarecrow-like transcription factor SlSCL3 regulates volatile terpene biosynthesis and glandular trichome size in tomato (Solanum lycopersicum). The Plant Journal 107:1102−18 doi: 10.1111/tpj.15371 |