[1]

Jucá MM, Cysne Filho FMS, de Almeida JC, da Silva Mesquita D, de Moraes Barriga JR, et al. 2020. Flavonoids: biological activities and therapeutic potential. Natural Product Research 34:692−705

doi: 10.1080/14786419.2018.1493588
[2]

Nabavi SM, Šamec D, Tomczyk M, Milella L, Russo D, et al. 2020. Flavonoid biosynthetic pathways in plants: versatile targets for metabolic engineering. Biotechnology Advances 38:107316

doi: 10.1016/j.biotechadv.2018.11.005
[3]

Shen N, Wang T, Gan Q, Liu S, Wang L, et al. 2022. Plant flavonoids: classification, distribution, biosynthesis, and antioxidant activity. Food Chemistry132531

doi: 10.1016/j.foodchem.2022.132531
[4]

Tohge T, de Souza LP, Fernie AR. 2017. Current understanding of the pathways of flavonoid biosynthesis in mode l and crop plants. Journal of Experimental Botany 68:4013−28

doi: 10.1093/jxb/erx177
[5]

Ma D, Reichelt M, Yoshida K, Gershenzon J, Constabel CP. 2018. Two R2R3-MYB proteins are broad repressors of flavonoid and phenylpropanoid metabolism in poplar. The Plant Journal 96:949−65

doi: 10.1111/tpj.14081
[6]

Li Y, Wang J, Wang K, Lyu S, Ren L, et al. 2022. Comparison analysis of widely-targeted metabolomics revealed the variation of potential astringent ingredients and their dynamic accumulation in the seed coats of both Carya cathayensis and Carya illinoinensis. Food Chemistry 374:131688

doi: 10.1016/j.foodchem.2021.131688
[7]

Ogo Y, Ozawa K, Ishimaru T, Murayama T, Takaiwa F. 2013. Transgenic rice seed synthesizing diverse flavonoids at high levels: a new platform for flavonoid production with associated health benefits. Plant Biotechnology Journal 11:734−746

doi: 10.1111/pbi.12064
[8]

Ma S, Lv L, Meng C, Zhang C, Li Y. 2020. Integrative analysis of the metabolome and transcriptome of Sorghum bicolor reveals dynamic changes in flavonoids accumulation under saline–alkali stress. Journal of Agricultural and Food Chemistry 68:14781−89

doi: 10.1021/acs.jafc.0c06249
[9]

Liu X, Lu X, Gao W, Li P, Yang H. 2022. Structure, synthesis, biosynthesis, and activity of the characteristic compounds from Ginkgo biloba L. Natural Product Reports 39:474−511

doi: 10.1039/D1NP00026H
[10]

Yokotani N, Sato Y, Tanabe S, Chujo T, Shimizu T, et al. 2013. WRKY76 is a rice transcriptional repressor playing opposite roles in blast disease resistance and cold stress tolerance. Journal of Experimental Botany 64:5085−97

doi: 10.1093/jxb/ert298
[11]

Xu W, Dubos C, Lepiniec L. 2015. Transcriptional control of flavonoid biosynthesis by MYB–bHLH–WDR complexes. Trends in Plant Science 20:176−85

doi: 10.1016/j.tplants.2014.12.001
[12]

Hassani D, Fu X, Shen Q, Khalid M, Rose JK, et al. 2020. Parallel transcriptional regulation of artemisinin and flavonoid biosynthesis. Trends in Plant Science 25:466−76

doi: 10.1016/j.tplants.2020.01.001
[13]

Xu W, Grain D, Bobet S, Le Gourrierec J, Thévenin J, et al. 2014. Complexity and robustness of the flavonoid transcriptional regulatory network revealed by comprehensive analyses of MYB–bHLH–WDR complexes and their targets in Arabidopsis seed. New Phytologist 202:132−44

doi: 10.1111/nph.12620
[14]

Wang N, Xu H, Jiang S, Zhang Z, Lu N, et al. 2017. MYB12 and MYB22 play essential roles in proanthocyanidin and flavonol synthesis in red-fleshed apple (Malus sieversii f. niedzwetzkyana). The Plant Journal 90:276−92

doi: 10.1111/tpj.13487
[15]

Stracke R, Ishihara H, Huep G, Barsch A, Mehrtens F, et al. 2007. Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. The Plant Journal 50:660−77

doi: 10.1111/j.1365-313X.2007.03078.x
[16]

An X, Tian Y, Chen K, Liu X, Liu D, et al. 2015. MdMYB9 and MdMYB11 are involved in the regulation of the JA-induced biosynthesis of anthocyanin and proanthocyanidin in apples. Plant and Cell Physiology 56:650−62

doi: 10.1093/pcp/pcu205
[17]

Wang N, Qu C, Jiang S, Chen Z, Xu H, et al. 2018. The proanthocyanidin-specific transcription factor MdMYBPA1 initiates anthocyanin synthesis under low-temperature conditions in red-fleshed apples. The Plant Journal 96:39−55

doi: 10.1111/tpj.14013
[18]

Zhai R, Wang Z, Zhang S, Meng G, Song L, et al. 2016. Two MYB transcription factors regulate flavonoid biosynthesis in pear fruit (Pyrus bretschneideri Rehd.). Journal of Experimental Botany 67:1275−84

doi: 10.1093/jxb/erv524
[19]

Shen Y, Sun T, Pan Q, Anupol N, Chen H, et al. 2019. RrMYB5- and RrMYB10-regulated flavonoid biosynthesis plays a pivotal role in feedback loop responding to wounding and oxidation in Rosa rugosa. Plant Biotechnology Journal 17:2078−95

doi: 10.1111/pbi.13123
[20]

Li X, Zhang L, Ahammed GJ, Li Y, Wei J, et al. 2019. Salicylic acid acts upstream of nitric oxide in elevated carbon dioxide-induced flavonoid biosynthesis in tea plant (Camellia sinensis L.). Environmental and Experimental Botany 161:367−74

doi: 10.1016/j.envexpbot.2018.11.012
[21]

Yue W, Ming Q, Lin B, Rahman K, Zheng C, et al. 2016. Medicinal plant cell suspension cultures: pharmaceutical applications and high-yielding strategies for the desired secondary metabolites. Critical Reviews in Biotechnology 36:215−32

doi: 10.3109/07388551.2014.923986
[22]

Liu Y, Li M, Li T, Chen Y, Zhang L, et al. 2020. Airborne fungus-induced biosynthesis of anthocyanins in Arabidopsis thaliana via jasmonic acid and salicylic acid signaling. Plant Science 300:110635

doi: 10.1016/j.plantsci.2020.110635
[23]

Ullah C, Tsai CJ, Unsicker SB, Xue L, Reichelt M, et al. 2019. Salicylic acid activates poplar defense against the biotrophic rust fungus Melampsora larici‐populina via increased biosynthesis of catechin and proanthocyanidins. New Phytologist 221:960−75

doi: 10.1111/nph.15396
[24]

Meng J, Wang B, He G, Wang Y, Tang X, et al. 2019. Metabolomics integrated with transcriptomics reveals redirection of the phenylpropanoids metabolic flux in Ginkgo biloba. Journal of Agricultural and Food Chemistry 67:3284−91

doi: 10.1021/acs.jafc.8b06355
[25]

Wang L, Cui J, Jin B, Zhao J, Xu H, et al. 2020. Multifeature analyses of vascular cambial cells reveal longevity mechanisms in old Ginkgo biloba trees. Proceedings of the National Academy of Sciences of the United States of America 117:2201−10

doi: 10.1073/pnas.1916548117
[26]

LeJeune TM, Tsui HY, Parsons LB, Miller GE, Whitted C, et al. 2015. Mechanism of action of two flavone isomers targeting cancer cells with varying cell differentiation status. PLoS ONE 10:e0142928

doi: 10.1371/journal.pone.0142928
[27]

Barbalho SM, Direito R, Laurindo LF, Marton LT, Guiguer EL, et al. 2022. Ginkgo biloba in the aging process: a narrative review. Antioxidants 11:525

doi: 10.3390/antiox11030525
[28]

Boateng ID. 2022. A critical review of current technologies used to reduce ginkgotoxin, ginkgotoxin-5'-glucoside, ginkgolic acid, allergic glycoprotein, and cyanide in Ginkgo biloba L. seed. Food Chemistry 382:132408

doi: 10.1016/j.foodchem.2022.132408
[29]

Šamec D, Karalija E, Dahija S, Hassan ST. 2022. Biflavonoids: important contributions to the health benefits of Ginkgo (Ginkgo biloba L.). Plants 11:1381

doi: 10.3390/plants11101381
[30]

Zhao B, Wang L, Pang S, Jia Z, Wang L, et al. 2020. UV-B promotes flavonoid synthesis in Ginkgo biloba leaves. Industrial Crops and Products 151:112483

doi: 10.1016/j.indcrop.2020.112483
[31]

Lu J, Xu Y, Meng Z, Cao M, Liu S, et al. 2021. Integration of morphological, physiological and multi-omics analysis reveals the optimal planting density improving leaf yield and active compound accumulation in Ginkgo biloba. Industrial Crops and Products 172:114055

doi: 10.1016/j.indcrop.2021.114055
[32]

Guo M, Yu Q, Li D, Xu K, Di Z, et al. 2023. In vitro propagation, shoot regeneration, callus induction, and suspension from lamina explants of Sorbus caloneura. Forestry Research 3:7

doi: 10.48130/FR-2023-0007
[33]

Yang X, Xu Q, Le L, Zhou T, Yu W, et al. 2023. Comparative histology, transcriptome, and metabolite profiling unravel the browning mechanisms of calli derived from ginkgo (Ginkgo biloba L.). Journal of Forestry Research 34:677−91

doi: 10.1007/s11676-022-01519-9
[34]

Gao F, Peng C, Wang H, Shen H, Yang L. 2021. Selection of culture conditions for callus induction and proliferation by somatic embryogenesis of Pinus koraiensis. Journal of Forestry Research 32:483−91

doi: 10.1007/s11676-020-01147-1
[35]

Bailey TL, Boden M, Buske FA, Frith M, Grant CE, et al. 2009. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Research 37:W202−W208

doi: 10.1093/nar/gkp335
[36]

Altunkaya A. 2011. Effect of whey protein concentrate on phenolic profile and browning of fresh-cut lettuce (Lactuca Sativa). Food Chemistry 128:754−60

doi: 10.1016/j.foodchem.2011.03.101
[37]

Singh B, Kumar A, Malik AK. 2017. Flavonoids biosynthesis in plants and its further analysis by capillary electrophoresis. Electrophoresis 38:820−32

doi: 10.1002/elps.201600334
[38]

Hussain MS, Fareed S, Ansari S, Rahman MA, Ahmad IZ, et al. 2012. Current approaches toward production of secondary plant metabolites. Journal of Pharmacy And Bioallied Sciences 4:10−20

[39]

Cui XH, Chakrabarty D, Lee EJ, Paek KY. 2010. Production of adventitious roots and secondary metabolites by Hypericum perforatum L. in a bioreactor. Bioresource Technology 101:4708−16

doi: 10.1016/j.biortech.2010.01.115
[40]

Sikora M, Świeca M. 2018. Effect of ascorbic acid postharvest treatment on enzymatic browning, phenolics and antioxidant capacity of stored mung bean sprouts. Food Chemistry 239:1160−66

doi: 10.1016/j.foodchem.2017.07.067
[41]

Moon KM, Lee B, Cho WK, Lee BS, Kim CY, et al. 2018. Swertiajaponin as an anti-browning and antioxidant flavonoid. Food Chemistry 252:207−14

doi: 10.1016/j.foodchem.2018.01.053
[42]

Yang L, Stöckigt J. 2010. Trends for diverse production strategies of plant medicinal alkaloids. Natural Product Reports 27:1469−79

doi: 10.1039/c005378c
[43]

Ali B. 2021. Salicylic acid: an efficient elicitor of secondary metabolite production in plants. Biocatalysis and Agricultural Biotechnology 31:101884

doi: 10.1016/j.bcab.2020.101884
[44]

Khan T, Khan T, Hano C, Abbasi BH. 2019. Effects of chitosan and salicylic acid on the production of pharmacologically attractive secondary metabolites in callus cultures of Fagonia indica. Industrial Crops and Products 129:525−35

doi: 10.1016/j.indcrop.2018.12.048
[45]

Schoenbohm C, Martens S, Eder C, Forkmann G, Weisshaar B. 2000. Identification of the Arabidopsis thaliana flavonoid 3'-hydroxylase gene and functional expression of the encoded P450 enzyme. Biological Chemistry 381:749−53

doi: 10.1515/BC.2000.095
[46]

Tanaka Y, Sasaki N, Ohmiya A. 2008. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. The Plant Journal 54:733−49

doi: 10.1111/j.1365-313X.2008.03447.x
[47]

Saito K, Yonekura-Sakakibara K, Nakabayashi R, Higashi Y, Yamazaki M, et al. 2013. The flavonoid biosynthetic pathway in Arabidopsis: structural and genetic diversity. Plant Physiology and Biochemistry 72:21−34

doi: 10.1016/j.plaphy.2013.02.001
[48]

Park S, Lee H, Min MK, Ha J, Song J, et al. 2021. Functional characterization of BrF3'H, which determines the typical flavonoid profile of purple Chinese cabbage. Frontiers in Plant Science 12:793589

doi: 10.3389/fpls.2021.793589
[49]

Toda K, Yang D, Yamanaka N, Watanabe S, Harada K, et al. 2002. A single-base deletion in soybean flavonoid 3'-hydroxylase gene is associated with gray pubescence color. Plant Molecular Biology 50:187−96

doi: 10.1023/A:1016087221334
[50]

Zabala G, Vodkin L. 2003. Cloning of the pleiotropic T locus in soybean and two recessive alleles that differentially affect structure and expression of the encoded flavonoid 3' hydroxylase. Genetics 163:295−309

doi: 10.1093/genetics/163.1.295
[51]

Li C, Yang K, Yang J, Wu H, Chen H, et al. 2022. Tartary buckwheat FtF3'H1 as a metabolic branch switch to increase anthocyanin content in transgenic plant. Frontiers in Plant Science 13:959698

doi: 10.3389/fpls.2022.959698
[52]

Han Y, Vimolmangkang S, Soria-Guerra RE, Rosales-Mendoza S, Zheng D, et al. 2010. Ectopic expression of apple F3'H genes contributes to anthocyanin accumulation in the Arabidopsis tt7 mutant grown under nitrogen stress. Plant Physiology 153:806−20

doi: 10.1104/pp.109.152801