[1]

Graham RD, Welch RM, Bouis HE. 2001. Addressing micronutrient malnutrition through enhancing the nutritional quality of staple foods: Principles, perspectives and knowledge gaps. Advances in Agronomy 70:77−142

doi: 10.1016/s0065-2113(01)70004-1
[2]

Jin Z, Zhang L, Liu H, Nie L. 2021. Energy assessment of different rice-wheat rotation systems. Food and Energy Security 10:394−405

doi: 10.1002/fes3.284
[3]

Chen H. 2016. Research methods and prospects of functional rice. Chinese Bulletin of Life Sciences 28:1279−86

[4]

Singh P, Singh G, Sodhi GPS. 2019. Energy auditing and optimization approach for improving energy efficiency of rice cultivation in south-western Punjab, India. Energy 174:269−79

doi: 10.1016/j.energy.2019.02.169
[5]

Hu EA, Pan A, Malik V, Sun Q. 2012. White rice consumption and risk of type 2 diabetes: meta-analysis and systematic review. BMJ 344:e1454

doi: 10.1136/bmj.e1454
[6]

Zhou H, Wang L, Liu G, Meng X, Jing Y, et al. 2016. Critical roles of soluble starch synthase SSIIIa and granule-bound starch synthase Waxy in synthesizing resistant starch in rice. PNAS 113:12844−49

doi: 10.1073/pnas.1615104113
[7]

Nishi A, Nakamura Y, Tanaka N, Satoh H. 2001. Biochemical and genetic analysis of the effects of Amylose—Extender mutation in rice endosperm. Plant Physiology 127:459−72

doi: 10.1104/pp.010127
[8]

Wada T, Yamaguchi O, Miyazaki M, Miyahara K, Ishibashi M, et al. 2018. Development and characterization of a new rice cultivar, ‘Chikushi-kona 85’, derived from a starch-branching enzyme IIb-deficient mutant line. Breeding Science 68:278−83

doi: 10.1270/jsbbs.17069
[9]

Miura S, Koyama N, Crofts N, Hosaka Y, Abe M, et al. 2021. Generation and starch characterization of non-transgenic BEI and BEIIb double mutant rice (Oryza sativa) with ultra-high level of resistant starch. Rice 14:3

doi: 10.1186/s12284-020-00441-0
[10]

Wei C, Qin F, Zhu L, Zhou W, Chen Y, et al. 2010. Microstructure and ultrastructure of high-amylose rice resistant starch granules modified by antisense RNA inhibition of starch branching enzyme. Journal of Agricultural and Food Chemistry 58:1224−32

doi: 10.1021/jf9031316
[11]

Zhu L, Gu M, Meng X, Cheung SCK, Yu H, et al. 2012. High-amylose rice improves indices of animal health in normal and diabetic rats. Plant Biotechnology Journal 10:353−62

doi: 10.1111/j.1467-7652.2011.00667.x
[12]

Tsuiki K, Fujisawa H, Itoh A, Sato M, Fujita N. 2016. Alterations of starch structure lead to increased resistant starch of steamed rice: Identification of high resistant starch rice lines. Journal of Cereal Science 68:88−92

doi: 10.1016/j.jcs.2016.01.002
[13]

Itoh Y, Crofts N, Abe M, Hosaka Y, Fujita N. 2017. Characterization of the endosperm starch and the pleiotropic effects of biosynthetic enzymes on their properties in novel mutant rice lines with high resistant starch and amylose content. Plant Science 258:52−60

doi: 10.1016/j.plantsci.2017.02.002
[14]

Xu W, Dubos C, Lepiniec L. 2015. Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends in Plant Science 20:176−85

doi: 10.1016/j.tplants.2014.12.001
[15]

Zhu Q, Yu S, Zeng D, Liu H, Wang H, et al. 2017. Development of “purple endosperm rice” by engineering anthocyanin biosynthesis in the endosperm with a high-efficiency transgene stacking system. Molecular Plant 10:918−29

doi: 10.1016/j.molp.2017.05.008
[16]

Finocchiaro F, Ferrari B, Gianinetti A. 2010. A study of biodiversity of flavonoid content in the rice caryopsis evidencing simultaneous accumulation of anthocyanins and proanthocyanidins in a black-grained genotype. Journal of Cereal Science 51:28−34

doi: 10.1016/j.jcs.2009.09.003
[17]

Furukawa T, Maekawa M, Oki T, Suda I, Iida S, et al. 2007. The Rc and Rd genes are involved in proanthocyanidin synthesis in rice pericarp. The Plant Journal 49:91−102

doi: 10.1111/j.1365-313X.2006.02958.x
[18]

Rahman MM, Lee KE, Lee ES, Matin MN, Lee DS, et al. 2013. The genetic constitutions of complementary genes Pp and Pb determine the purple color variation in pericarps with cyanidin-3-O-glucoside depositions in black rice. Journal of Plant Biology 56:24−31

doi: 10.1007/s12374-012-0043-9
[19]

Ito VC, Lacerda LG. 2019. Black rice (Oryza sativa L.): A review of its historical aspects, chemical composition, nutritional and functional properties, and applications and processing technologies. Food Chemistry 301:125304

doi: 10.1016/j.foodchem.2019.125304
[20]

Zhu Q, Zeng D, Yu S, Cui C, Li J, et al. 2018. From golden rice to aSTARice: Bioengineering astaxanthin biosynthesis in rice endosperm. Molecular Plant 11:1440−48

doi: 10.1016/j.molp.2018.09.007
[21]

Chen MH, Bergman CJ, Grimm CC, McClung AM. 2020. A rice mutant with a giant embryo has increased levels of lipophilic antioxidants, E vitamers, and γ-oryzanol fraction. Cereal Chemistry 97:270−80

doi: 10.1002/cche.10242
[22]

Satoh H, Omura T. 1981. New endosperm mutations induced by chemical mutagens in rice Oryza sativa L. Japanese Journal of Breeding 31:316−26

doi: 10.1270/jsbbs1951.31.316
[23]

Zheng Z, Sumi K, Tanaka K, Murai N. 1995. The bean seed storage protein β-phaseolin is synthesized, processed and accumulated in vacuolar Type-II protein bodies of transgenic rice endosperm. Plant Physiology 109:777−86

doi: 10.1104/pp.109.3.777
[24]

Maeda H, Nemoto H, Iida S, Ishii T, Nakagawa N, et al. 2001. A new rice variety with giant embryos, "Haiminori". Breeding Science 51:211−13

doi: 10.1270/jsbbs.51.211
[25]

Yang WB, Gao MJ, Yin X, Liu J, Xu YH, et al. 2013. Control of rice embryo development, shoot apical meristem maintenance, and grain yield by a novel cytochrome P450. Molecular Plant 6:1945−60

doi: 10.1093/mp/sst107
[26]

Nagasawa N, Hibara KI, Heppard EP, Vander Velden KA, Luck S, et al. 2013. GIANT EMBRYO encodes CYP78A13, required for proper size balance between embryo and endosperm in rice. The Plant Journal 75:592−605

doi: 10.1111/tpj.12223
[27]

Lee G, Piao R, Lee Y, Kim B, Seo J, et al. 2019. Identification and characterization of LARGE EMBRYO, a new gene controlling embryo size in rice (Oryza sativa L.). Rice 12:22

doi: 10.1186/s12284-019-0277-y
[28]

Katsube T, Kurisaka N, Ogawa M, Maruyama N, Ohtsuka R, et al. 1999. Accumulation of soybean glycinin and its assembly with the glutelins in rice. Plant Physiology 120:1063−74

doi: 10.1104/pp.120.4.1063
[29]

Yang Y, Guo M, Sun S, Zou Y, Yin S, et al. 2019. Natural variation of OsGluA2 is involved in grain protein content regulation in rice. Nature Communications 10:1949

doi: 10.1038/s41467-019-09919-y
[30]

Rhee CM, Ahmadi SF, Kovesdy CP, Kalantar-Zadeh K. 2018. Low-protein diet for conservative management of chronic kidney disease: A systematic review and meta-analysis of controlled trials. Journal of Cachexia, Sarcopenia and Muscle 9:235−45

doi: 10.1002/jcsm.12264
[31]

Iida S, Amano E, Nishio T. 1993. A rice (Oryza sativa L.) mutant having a low content of glutelin and a high content of prolamine. Theoretical and Applied Genetics 87:374−78

doi: 10.1007/BF01184926
[32]

Miyahara K. 1999. Analysis of LGC-1, low glutelin mutant of rice. Gamma Field Symposia 38:43−52

[33]

Nishimura M, Morita R, Kusaba M. 2009. Utilization and molecular characterization of seed protein composition mutants in rice plants. Japan Agricultural Research Quarterly 43:1−5

doi: 10.6090/jarq.43.1
[34]

Mason J, Bailes A, Beda-Andourou M, Copeland N, Curtis T, et al. 2005. Recent trends in malnutrition in developing regions: Vitamin A deficiency, anemia, iodine deficiency, and child underweight. Food and Nutrition Bulletin 26:59−108

doi: 10.1177/156482650502600108
[35]

Majumder S, Datta K, Datta SK. 2019. Rice biofortification: High iron, zinc, and vitamin-A to fight against "hidden hunger". Agronomy 9:803

doi: 10.3390/agronomy9120803
[36]

Ye X, Al-Babili S, Klöti A, Zhang J, Lucca P, et al. 2000. Engineering the provitamin A (β-Carotene) biosynthetic pathway into (carotenoid-Free) rice endosperm. Science 287:303−5

doi: 10.1126/science.287.5451.303
[37]

Paine JA, Shipton CA, Chaggar S, Howells RM, Kennedy MJ, et al. 2005. Improving the nutritional value of golden rice through increased pro-vitamin A content. Nature Biotechnology 23:482−87

doi: 10.1038/nbt1082
[38]

Trijatmiko KR, Dueñas C, Tsakirpaloglou N, Torrizo L, Arines FM, et al. 2016. Biofortified indica rice attains iron and zinc nutrition dietary targets in the field. Scientific Reports 6:19792

doi: 10.1038/srep19792
[39]

Masuda H, Usuda K, Kobayashi T, Ishimaru Y, Kakei Y, et al. 2009. Overexpression of the barley nicotianamine synthase gene HvNAS1 increases iron and zinc concentrations in rice grains. Rice 2:155−66

doi: 10.1007/s12284-009-9031-1
[40]

Lucca P, Hurrell R, Potrykus I. 2001. Genetic engineering approaches to improve the bioavailability and the level of iron in rice grains. Theoretical and Applied Genetics 102:392−97

doi: 10.1007/s001220051659
[41]

Raboy V. 2001. Seeds for a better future: ‘Low phytate’ grains help to overcome malnutrition and reduce pollution. Trends in Plant Science 6:458−62

doi: 10.1016/S1360-1385(01)02104-5
[42]

Taylor PG, Martínez-Torres C, Romano EL, Layrisse M. 1986. The effect of cysteine-containing peptides released during meat digestion on iron absorption in humans. American Journal of Clinical Nutrition 43:68−71

doi: 10.1093/ajcn/43.1.68
[43]

Pazhamala L, Saxena RK, Singh VK, Sameerkumar CV, Kumar V, et al. 2015. Genomics-assisted breeding for boosting crop improvement in pigeonpea (Cajanus cajan). Frontiers in Plant Science 6:50

doi: 10.3389/fpls.2015.00050
[44]

Yi D, Cui L, Wang L, Liu Y, Zhuang M, et al. 2013. Pyramiding of Bt cry1Ia8 and cry1Ba3 genes into cabbage (Brassica oleracea L. var. Capitata) confers effective control against diamondback moth. Plant Cell, Tissue and Organ Culture 115:419−28

doi: 10.1007/s11240-013-0373-4
[45]

Tanksley SD, Young ND, Paterson AH, Bonierbale MW. 1989. RFLP mapping in plant breeding: New tools for an old science. Nature Biotechnology 7:257−64

doi: 10.1038/nbt0389-257
[46]

Hatta MAM, Arora S, Ghosh S, Matny O, Smedley MA, et al. 2021. The wheat Sr22, Sr33, Sr35 and Sr45 genes confer resistance against stem rust in barley. Plant Biotechnology Journal 19:273−84

doi: 10.1111/pbi.13460
[47]

Li CX, Zhang JG, Ren ZY, Xie R, Yin CX, et al. 2021. Development of 'multiresistance rice' by an assembly of herbicide, insect and disease resistance genes with a transgene stacking system. Pest Management Science 77:1536−47

doi: 10.1002/ps.6178
[48]

Bollinedi H, Krishnan SG, Prabhu KV, Singh NK, Mishra S, et al. 2017. Molecular and functional characterization of GR2-R1 event based backcross derived lines of golden rice in the genetic background of a mega rice variety swarna. PLoS One 12:e0169600

doi: 10.1371/journal.pone.0169600
[49]

Upadhyaya CP, Nookaraju A, Gururani MA, Upadhyaya DC, Kim DH, et al. 2010. An update on the progress towards the development of marker-free transgenic plants. Botanical Studies 51:277−92

[50]

Miah G, Rafii MY, Ismail MR, Puteh AB, Rahim HA, et al. 2013. A review of microsatellite markers and their applications in rice breeding programs to improve blast disease resistance. International Journal of Molecular Sciences 14:22499−528

doi: 10.3390/ijms141122499
[51]

Liu WX, Maurer HP, Li GL, Tucker MR, Gowda M, et al. 2014. Genetic architecture of winter hardiness and frost tolerance in triticale. PLoS One 9:e99848

doi: 10.1371/journal.pone.0099848
[52]

Zhang YP, Kyle M, Anagnostou K, Zitter TA. 1997. Screening melon (Cucumis melo L.) for resistance to gummy stem blight in the greenhouse and field. Hortscience 32:117−21

doi: 10.21273/hortsci.32.1.117
[53]

Takeda S. 1979. Researches on the protein of rice. Proceedings of the crop science society of Japan 48:517−24

doi: 10.1626/jcs.48.517
[54]

Liu Q, Li T, Cai J, Zhang J. 2006. Effects of shading at different growth stages on amylose and protein contents in rice grain. Chinese Agricultural Science Bulletin 22(8):234−37

doi: 10.3969/j.issn.1000-6850.2006.08.059
[55]

Zaidi SHR. 2019. Effects of abiotic stress on physiological properties of pigment accumulation in filling grain for color rice (Oryza sativa L.). Thesis. Zhejiang University, China.

[56]

Cabuslay GS, Sison CB, Laureles E, Buresh R, Lazaro W, et al. 2003. Grain mineral density: Nitrogen response and seasonal variation. Workshop on Rice Breeding for Better Nutrition 4:7−11

[57]

Li L, Zhang M, Liu L, Chi J, Wei Z, et al. 2007. Stability comparison of anthocyanin extracts in seed coats of three black crops. Transactions of The Chinese Society of Agricultural Machinery 38:91−95

doi: 10.3969/j.issn.1000-1298.2007.05.023
[58]

Nakano H, Ono H, Iwasawa N, Takai T, Arai-Sanoh Y, et al. 2013. Isolation and identification of phenolic compounds accumulated in brown rice grains ripened under high air temperature. Journal of Agricultural and Food Chemistry 61:11921−28

doi: 10.1021/jf403416e
[59]

Cai ZZ, He FY, Feng X, Liang T, Wang HW, et al. 2020. Transcriptomic analysis reveals important roles of lignin and flavonoid biosynthetic pathways in rice thermotolerance during reproductive stage. Frontiers in Genetics 11:562937

doi: 10.3389/fgene.2020.562937
[60]

Cao ZZ, Zhao Q, Pan G, Wei KS, Zhou LJ, et al. 2017. Comprehensive expression of various genes involved in storage protein synthesis in filling rice grain as affected by high temperature. Plant Growth Regulation 81:477−88

doi: 10.1007/s10725-016-0225-4
[61]

Goufo P, Trindade H. 2014. Rice antioxidants: Phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, γ-oryzanol, and phytic acid. Food Science & Nutrition 2:75−104

doi: 10.1002/fsn3.86
[62]

Su D, Lei BT, Li ZW, Cao ZZ, Huang FD, et al. 2014. Influence of high temperature during filling period on grain phytic acid and its relation to spikelet sterility and grain weight in non-lethal low phytic acid mutations in rice. Journal of Cereal Science 60:331−38

doi: 10.1016/j.jcs.2014.04.010
[63]

Watanabe M, Okubo S, Kanno H, Mochida H. 2014. Antioxidant phenolic compound concentrations and antioxidant activity in colored rice cultivated under different climatic conditions. Nippon Shokuhin Kagaku Kogaku Kaishi 61:528−35

doi: 10.3136/nskkk.61.528
[64]

Cabrita L, Fossen T, Andersen ØM. 2000. Colour and stability of the six common anthocyanidin 3-glucosides in aqueous solutions. Food Chemistry 68:101−7

doi: 10.1016/S0308-8146(99)00170-3
[65]

Youn YS, Park JK, Jang HD, Rhee YW. 2011. Sequential hydration with anaerobic and heat treatment increases GABA (γ-aminobutyric acid) content in wheat. Food Chemistry 129:1631−35

doi: 10.1016/j.foodchem.2011.06.020
[66]

Zhang H, Hou D, Peng X, Ma B, Shao S, et al. 2019. Optimizing integrative cultivation management improves grain quality while increasing yield and nitrogen use efficiency in rice. Journal of Integrative Agriculture 18:2716−31

doi: 10.1016/S2095-3119(19)62836-4
[67]

Zhao G, Xie M, Wang Y, Li J. 2017. Molecular mechanisms underlying γ-aminobutyric acid (GABA) accumulation in giant embryo rice seeds. Journal of Agricultural and Food Chemistry 65:4883−89

doi: 10.1021/acs.jafc.7b00013
[68]

Prathap V, Ali K, Singh A, Vishwakarma C, Krishnan V, et al. 2019. Starch accumulation in rice grains subjected to drought during grain filling stage. Plant Physiology and Biochemistry 142:440−51

doi: 10.1016/j.plaphy.2019.07.027
[69]

Nisar N, Li L, Lu S, Khin NC, Pogson BJ. 2015. Carotenoid metabolism in plants. Molecular Plant 8:68−82

doi: 10.1016/j.molp.2014.12.007
[70]

Cakmak I. 2008. Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant and Soil 302:1−17

doi: 10.1007/s11104-007-9466-3
[71]

Li HF, Lombi E, Stroud JL, McGrath SP, Zhao FJ. 2010. Selenium speciation in soil and rice: Influence of water management and Se fertilization. Journal of Agricultural and Food Chemistry 58:11837−43

doi: 10.1021/jf1026185
[72]

Zhou XB, Li YY, Lai F. 2018. Effects of different water management on absorption and accumulation of selenium in rice. Saudi Journal of Biological Sciences 25:1178−82

doi: 10.1016/j.sjbs.2017.10.017
[73]

Deng X, Liu K, Li M, Zhang W, Zhao X, et al. 2017. Difference of selenium uptake and distribution in the plant and selenium form in the grains of rice with foliar spray of selenite or selenate at different stages. Field Crops Research 211:165−71

doi: 10.1016/j.fcr.2017.06.008
[74]

Shin DH, Choi MG, Kang CS, Park CS, Choi SB, et al. 2016. A wheat R2R3-MYB protein PURPLE PLANT1 (TaPL1) functions as a positive regulator of anthocyanin biosynthesis. Biochemical and Biophysical Research Communications 469:686−91

doi: 10.1016/j.bbrc.2015.12.001
[75]

Teixeira LS, Pimenta TM, Brito FAL, Malheiros RSP, Arruda RS, et al. 2021. Selenium uptake and grain nutritional quality are affected by nitrogen fertilization in rice (Oryza sativa L.). Plant Cell Reports 40:871−80

doi: 10.1007/s00299-021-02685-6
[76]

Xue Y, Eagling T, He J, Zou C, McGrath SP, et al. 2014. Effects of nitrogen on the distribution and chemical speciation of iron and zinc in pearling fractions of wheat grain. Journal of Agricultural and Food Chemistry 62:4738−46

doi: 10.1021/jf500273x
[77]

Prom-u-thai C, Rerkasem B. 2003. The effect of nitrogen on rice grain iron. International Rice Research Notes 28:37−38

[78]

Yang S, Han Z, Liu M, Zhang M, Yang B, et al. 2012. Impacts of nitrogen application amounts on grain quality and mineral elements concentrations of Japonica rice in Jianghuai River area. Jiangsu Journal of Agricultural Sciences 28:703−8

doi: 10.3969/j.issn.1000-4440.2012.04.003
[79]

Lucena JJ. 2000. Effects of bicarbonate, nitrate and other environmental factors on iron deficiency chlorosis: A review. Journal of Plant Nutrition 23:1591−606

doi: 10.1080/01904160009382126
[80]

Su D, Zhou L, Zhao Q, Pan G, Cheng F. 2018. Different phosphorus supplies altered the accumulations and quantitative distributions of phytic acid, zinc, and iron in rice (Oryza sativa L.) grains. Journal of Agricultural and Food Chemistry 66:1601−11

doi: 10.1021/acs.jafc.7b04883
[81]

Nguyen DN, Nguyen TT, Tran QN, Macdonald B, To TP, et al. 2017. Soil and rice responses to phosphate fertilizer in two contrasting seasons on acid sulfate soil. Communications in Soil Science and Plant Analysis 48:615−23

doi: 10.1080/00103624.2016.1253719
[82]

Guo JX, Feng XM, Hu XY, Tian GL, Ling N, et al. 2016. Effects of soil zinc availability, nitrogen fertilizer rate and zinc fertilizer application method on zinc biofortification of rice. Journal of Agricultural Science 154:584−97

doi: 10.1017/S0021859615000441
[83]

Ning H, Qiao J, Liu Z, Lin Z, Li G, et al. 2010. Distribution of proteins and amino acids in milled and brown rice as affected by nitrogen fertilization and genotype. Journal of Cereal Science 52:90−95

doi: 10.1016/j.jcs.2010.03.009
[84]

Ning H, Liu Z, Wang Q, Lin Z, Chen S, et al. 2009. Effect of nitrogen fertilizer application on grain phytic acid and protein concentrations in japonica rice and its variations with genotypes. Journal of Cereal Science 50:49−55

doi: 10.1016/j.jcs.2009.02.005
[85]

Li G, Chen Y, Ding Y, Geng C, Li Q, et al. 2016. Charactering protein fraction concentrations as influenced by nitrogen application in low-glutelin rice cultivars. Journal of Integrative Agriculture 15:537−44

doi: 10.1016/S2095-3119(15)61182-0
[86]

Leesawatwong M, Jamjod S, Kuo J, Dell B, Rerkasem B. 2005. Nitrogen fertilizer increases seed protein and milling quality of rice. Cereal Chemistry Journal 82:588−93

doi: 10.1094/CC-82-0588
[87]

Sperotto RA, Ricachenevsky FK, Waldow VdA , Fett JP. 2012. Iron biofortification in rice: It’s a long way to the top. Plant Science 190:24−39

doi: 10.1016/j.plantsci.2012.03.004
[88]

Phattarakul N, Rerkasem B, Li L, Wu L, Zou C, et al. 2012. Biofortification of rice grain with zinc through zinc fertilization in different countries. Plant and Soil 361:131−41

doi: 10.1007/s11104-012-1211-x
[89]

Jiang W, Struik PC, Lingna J, van Keulen H, Ming Z, et al. 2007. Uptake and distribution of root-applied or foliar-applied 65Zn after flowering in aerobic rice. Annals of Applied Biology 150:383−91

doi: 10.1111/j.1744-7348.2007.00138.x
[90]

Yuan L, Wu L, Yang C, Lv Q. 2013. Effects of iron and zinc foliar applications on rice plants and their grain accumulation and grain nutritional quality: Effects of Fe and Zn foliar applications on rice plants. Journal of the Science of Food and Agriculture 93:254−61

doi: 10.1002/jsfa.5749
[91]

Liang Y, Su Y, Li L, Huang X, Panhwar FH, et al. 2019. Quick selenium accumulation in the selenium-rich rice and its physiological responses in changing selenium environments. BMC Plant Biology 19:559

doi: 10.1186/s12870-019-2163-6
[92]

Huang G, Ding C, Yu X, Yang Z, Zhang T, et al. 2018. Characteristics of time-dependent selenium biofortification of rice (Oryza sativa L.). Journal of Agricultural and Food Chemistry 66:12490−97

doi: 10.1021/acs.jafc.8b04502
[93]

Sors TG, Ellis DR, Salt DE. 2005. Selenium uptake, translocation, assimilation and metabolic fate in plants. Photosynthesis Research 86:373−89

doi: 10.1007/s11120-005-5222-9
[94]

Chen X, Zhang Z, Gu M, Li H, Shohag MJI, et al. 2020. Combined use of arbuscular mycorrhizal fungus and selenium fertilizer shapes microbial community structure and enhances organic selenium accumulation in rice grain. Science of The Total Environment 748:141166

doi: 10.1016/j.scitotenv.2020.141166
[95]

Zhang M, Tang S, Huang X, Zhang F, Pang Y, et al. 2014. Selenium uptake, dynamic changes in selenium content and its influence on photosynthesis and chlorophyll fluorescence in rice (Oryza sativa L.). Environmental and Experimental Botany 107:39−45

doi: 10.1016/j.envexpbot.2014.05.005
[96]

Zhou X, Shi W, Yang L. 2007. Effect of foliar application of selenite on selenium accumulation and distribution in rice. Acta Pedologica Sinica 44:73−78

doi: 10.3321/j.issn:0564-3929.2007.01.011
[97]

Longchamp M, Castrec-Rouelle M, Biron P, Bariac T. 2015. Variations in the accumulation, localization and rate of metabolization of selenium in mature Zea mays plants supplied with selenite or selenate. Food Chemistry 182:128−35

doi: 10.1016/j.foodchem.2015.02.137
[98]

Hu Q, Chen L, Xu J, Zhang Y, Pan G. 2002. Determination of selenium concentration in rice and the effect of foliar application of Se-enriched fertiliser or sodium selenite on the selenium content of rice. Journal of the Science of Food and Agriculture 82:869−72

doi: 10.1002/jsfa.1115
[99]

Chen L, Yang F, Xu J, Hu Y, Hu Q, et al. 2002. Determination of selenium concentration of rice in China and effect of fertilization of selenite and selenate on selenium content of rice. Journal of Agricultural and Food Chemistry 50:5128−30

doi: 10.1021/jf0201374
[100]

Xu J, Hu Q. 2004. Effect of foliar application of selenium on the antioxidant activity of aqueous and ethanolic extracts of selenium-enriched rice. Journal of Agricultural and Food Chemistry 52(6):1759−63

doi: 10.1021/jf0349836
[101]

Lin PY, Lai HM. 2011. Bioactive compounds in rice during grain development. Food Chemistry 127:86−93

doi: 10.1016/j.foodchem.2010.12.092
[102]

Shao Y, Xu F, Sun X, Bao J, Beta T. 2014. Phenolic acids, anthocyanins, and antioxidant capacity in rice (Oryza sativa L.) grains at four stages of development after flowering. Food Chemistry 143:90−96

doi: 10.1016/j.foodchem.2013.07.042
[103]

Oerke EC, Dehne HW. 2004. Safeguarding production—Losses in major crops and the role of crop protection. Crop Protection 23:275−85

doi: 10.1016/j.cropro.2003.10.001
[104]

Oehl F, Sieverding E, Mäder P, Dubois D, Ineichen K, et al. 2004. Impact of long-term conventional and organic farming on the diversity of arbuscular mycorrhizal fungi. Oecologia 138:574−83

doi: 10.1007/s00442-003-1458-2
[105]

Wang W, He A, Jiang G, Sun H, Jiang M, et al. 2020. Ratoon rice technology: A green and resource-efficient way for rice production. Advances in Agronomy 159:135−67

doi: 10.1016/bs.agron.2019.07.006
[106]

Sun D, Rickaille M, Xu Z. 2018. Determinants and impacts of outsourcing pest and disease management: Evidence from China's rice production. China Agricultural Economic Review 10:443−61

doi: 10.1108/CAER-01-2017-0011
[107]

Divya D, Madhavi KR, Dass MA, Maku RV, Mallikarjuna G, et al. 2018. Expression profile of defense genes in rice lines pyramided with resistance genes against bacterial blight, fungal blast and insect gall midge. Rice 11:40

doi: 10.1186/s12284-018-0231-4
[108]

Hu J, Cheng M, Gao G, Zhang Q, Xiao J, et al. 2013. Pyramiding and evaluation of three dominant brown planthopper resistance genes in the elite indica rice 9311 and its hybrids. Pest Management Science 69:802−8

doi: 10.1002/ps.3437
[109]

Teng Q, Hu X, Luo F, Cheng C, Ge X, et al. 2016. Influences of introducing frogs in the paddy fields on soil properties and rice growth. Journal of Soils and Sediments 16:51−61

doi: 10.1007/s11368-015-1183-6
[110]

Magdoff F. 1993. Building soils for better crops: Organic matter management. Soil Science 156:371

doi: 10.1097/00010694-199311000-00014
[111]

Cook SM, Khan ZR, Pickett JA. 2007. The use of push-pull strategies in integrated pest management. Annual Review of Entomology 52:375−400

doi: 10.1146/annurev.ento.52.110405.091407
[112]

Lu J, Chen Y. 1994. Effect of SMV-Infection on metabolisms of carbon and nitrogen compounds in soybean. Journal of Nanjing Agricultural University 17:43−47

[113]

Zas R, Sampedro L, Prada E, Lombardero MJ, Fernández-López J. 2006. Fertilization increases Hylobius abietis L. damage in Pinus pinaster Ait. Seedlings. Forest Ecology and Management 222:137−44

doi: 10.1016/j.foreco.2005.10.008
[114]

Ai T, Liu Z, Li C, Luo P, Zhu J, et al. 2011. Impact of fertilization on cotton aphid population in Bt-cotton production system. Ecological Complexity 8:9−14

doi: 10.1016/j.ecocom.2010.08.002
[115]

Rodrigues FÁ, Jurick WM II, Datnoff LE, Jones JB, Rollins JA. 2005. Silicon influences cytological and molecular events in compatible and incompatible rice—Magnaporthe grisea interactions. Physiological and Molecular Plant Pathology 66:144−59

doi: 10.1016/j.pmpp.2005.06.002
[116]

Guntzer F, Keller C, Meunier JD. 2012. Benefits of plant silicon for crops: A review. Agronomy for Sustainable Development 32:201−13

doi: 10.1007/s13593-011-0039-8
[117]

Kvedaras OL, An M, Choi YS, Gurr GM. 2010. Silicon enhances natural enemy attraction and biological control through induced plant defences. Bulletin of Entomological Research 100:367−71

doi: 10.1017/S0007485309990265
[118]

Ramesh P, Singh M, Rao A. 2005. Organic farming: Its relevance to the Indian context. Current Scientist 88:561−68

[119]

Ratnadass A, Fernandes P, Avelino J, Habib R. 2012. Plant species diversity for sustainable management of crop pests and diseases in agroecosystems: A review. Agronomy for Sustainable Development 32:273−303

doi: 10.1007/s13593-011-0022-4