[1]

Guo M, Sun Z, Pan J, Xu M. 2008. Research on short time traffic flow forecasting method. Application Research of Computers 25(9):2676−78

doi: 10.3969/j.issn.1001-3695.2008.09.031
[2]

Asghari M, Deng D, Shahabi C, Demiryurek U, Li Y. 2016. Price-aware real-time ride-sharing at scale: an auction-based approach. In Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Burlingame, CA, USA, 2016. Association for Computing Machinery, New York, USA. pp. 1−10. https://doi.org/10.1145/2996913.2996974

[3]

Gilmore JF, Abe N. 1995. Neural network models for traffic control and congestion prediction. Journal of Intelligent Transportation Systems 2(3):231−52

doi: 10.1080/10248079508903828
[4]

Qin X. 2023. Traffic flow prediction based on Two-Channel Multi-Modal fusion of MCB and attention. IEEE Access 11:58745−53

doi: 10.1109/ACCESS.2023.3280068
[5]

Nguyen H, Kieu LM, Wen T, Cai C. 2018. Deep learning methods in transportation domain: a review. IET Intelligent Transport Systems 12:998−1004

doi: 10.1049/iet-its.2018.0064
[6]

Zhang J, Wang F, Wang K, Lin W, Xu X, et al. 2011. Data-driven intelligent transportation systems: a survey. IEEE Transactions on Intelligent Transportation Systems 12(4):1624−39

doi: 10.1109/TITS.2011.2158001
[7]

Singh G, Al’Aref SJ, Van Assen M, Kim TS, van Rosendael A et al. 2018. Machine learning in cardiac CT: basic concepts and contemporary data. Journal of Cardiovascular Computed Tomography 12(3):192−201

doi: 10.1016/j.jcct.2018.04.010
[8]

Ahsan MM, Luna SA, Siddique Z. 2022. Machine-learning-based disease diagnosis: a comprehensive review. Healthcare 10(3):541

doi: 10.3390/healthcare10030541
[9]

Dey A. 2016. Machine learning algorithms: a review. International Journal of Computer Science and Information Technologies 7(3):1174−79

[10]

Dhall D, Kaur R, Juneja M. 2019. Machine learning: a review of the algorithms and its applications. In Proceedings of ICRIC 2019. Lecture Notes in Electrical Engineering, eds. Singh P, Kar A, Singh Y, Kolekar M, Tanwar S. vol 597. Switzerland: Springer, Cham. pp. 47−63. https://doi.org/10.1007/978-3-030-29407-6_5

[11]

Osisanwo FY, Akinsola JET, Oludele A, Hinmikaiye JO, Olakanmi O, et al. 2017. Supervised machine learning algorithms: classification and comparison. International Journal of Computer Trends and Technology 48(3):128−38

doi: 10.14445/22312803/IJCTT-V48P126
[12]

Obulesu O, Mahendra M, ThrilokReddy M. 2018. Machine learning techniques and tools: a survey. International conference on inventive research in computing applications (ICIRCA), Coimbatore, India, 2018. USA: IEEE. pp. 605−11. https://doi.org/10.1109/ICIRCA.2018.8597302

[13]

Ray S. 2019. A quick review of machine learning algorithms. International conference on machine learning, big data, cloud and parallel computing (COMITCon), Faridabad, India, 2019. USA: IEEE. pp. 35−39. https://doi.org/10.1109/COMITCon.2019.8862451

[14]

Kumar R, Verma RK. 2012. Classifcation algorithms for data mining: a survey. International Journal of Innovations in Engineering and Technology 1(2):7−14

[15]

Nikam SS. 2015. A comparative study of classifcation techniques in data mining algorithms. Oriental Journal of Computer Science & Technology 8(1):13−19

[16]

Stein G, Chen B, Wu AS, Hua KA. 2005. Decision tree classifier for network intrusion detection with GA-based feature selection. Proceedings of the 43rd annual Southeast regional conference, Kennesaw, Georgia, 2005. vol 2. New York, USA: Association for Computing Machinery. pp: 136-41. https://doi.org/10.1145/1167253.1167288

[17]

Damanik IS, Windarto AP, Wanto A, Poningsih, Andani SR, et al. 2019. Decision tree optimization in C4. 5 Algorithm using genetic algorithm. Journal of Physics: Conference Series 1255:012012

doi: 10.1088/1742-6596/1255/1/012012
[18]

Mahesh B. 2020. Machine learning algorithms—a review. International Journal of Science and Research 9:381−86

doi: 10.21275/ART20203995
[19]

Charbuty B, Abdulazeez A. 2021. Classification based on decision tree algorithm for machine learning. Journal of Applied Science and Technology 2(1):20−28

doi: 10.38094/jastt20165
[20]

Belgiu M, Drăguţ L. 2016. Random forest in remote sensing: a review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing 114:24−31

doi: 10.1016/j.isprsjprs.2016.01.011
[21]

He Y, Lee E, Warner TA. 2017. A time series of annual land use and land cover maps of China from 1982 to 2013 generated using AVHRR GIMMS NDVI3g data. Remote Sensing of Environment 199:201−17

doi: 10.1016/j.rse.2017.07.010
[22]

Maxwell AE, Warner TA, Fang F. 2018. Implementation of machine-learning classification in remote sensing: an applied review. International Journal of Remote Sensing 39(9):2784−817

doi: 10.1080/01431161.2018.1433343
[23]

Gow J, Baumgarten R, Cairns P, Colton S, Miller P. 2012. Unsupervised modeling of player style with LDA. IEEE Transactions on Computational Intelligence and AI in Games 4(3):152−66

doi: 10.1109/TCIAIG.2012.2213600
[24]

Achille A, Soatto S. 2018. Information dropout: Learning optimal representations through noisy computation. IEEE Transactions on Pattern Analysis and Machine Intelligence 40:2897−905

doi: 10.1109/TPAMI.2017.2784440
[25]

Wilkes JT, Gallistel CR. 2017. Information theory, memory, prediction, and timing in associative learning. In Computational Models of Brain and Behavior, ed. Moustafa AA. | Hoboken, NJ, USA: John Wiley & Sons. pp. 481−92. https://doi.org/10.1002/9781119159193.ch35

[26]

Lizotte DJ, Laber EB. 2016. Multi-objective Markov decision processes for data-driven decision support. Journal of Machine Learning Research 17:211

[27]

Nguyen G, Dlugolinsky S, Bobák M, Tran V, López García Á, Heredia I et al. 2019. Machine learning and deep learning frameworks and libraries for large-scale data mining: a survey. Artificial Intelligence Review 52(1):77−124

doi: 10.1007/s10462-018-09679-z
[28]

LeCun Y, Bengio Y, Hinton G. 2015. Deep learning. Nature 521:436−44

doi: 10.1038/nature14539
[29]

Schmidhuber J. 2015. Deep learning in neural networks: an overview. Neural Networks 61:85−117

doi: 10.1016/j.neunet.2014.09.003
[30]

Wang D, Cai Z, Zeng J, Zhang G, Guo J. 2020. Review of traffic data collection research on urban traffic control. Journal of Transportation Systems Engineering and Information Technology 20(3):95−102

doi: 10.16097/j.cnki.1009-6744.2020.03.015
[31]

Zhou L, Zhang Q, Yin C, Ye W. 2022. Research on Short-term Traffic Flow Prediction Based on KNN-GRU. 2022 China Automation Congress (CAC), Xiamen, China, 2022. USA: IEEE. pp:1924−28. https://doi.org/10.1109/CAC57257.2022.10055164

[32]

Yu B, Yin H, Zhu Z. 2018. Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting. Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI '18), Stockholm, 2018. USA: International Joint Conferences on Artificial Intelligence. pp. 3634−40. https://doi.org/10.24963/ijcai.2018/505

[33]

Guo S, Lin Y, Feng N, Song C, Wan H. 2019. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting. Proceedings of the 33rd AAAI Conference on Artificial Intelligence, 31st Innovative Applications of Artificial Intelligence Conference and 9th AAAI Symposium on Educational Advances in Artificial Intelligence, Honolulu, Hawaii, USA, 2019. Palo Alto, California USA: AAAI Press. pp. 922−29. https://doi.org/10.1609/aaai.v33i01.3301922

[34]

Diao Z, Wang X, Zhang D, Liu Y, Xie K, et al. 2019. Dynamic spatial-temporal graph convolutional neural networks for traffic forecasting. Proceedings of the 33rd AAAI Conference on Artificial Intelligence, 31st Innovative Applications of Artificial Intelligence Conference and 9th AAAI Symposium on Educational Advances in Artificial Intelligence, Honolulu, Hawaii, USA, 2019. Palo Alto, California USA: AAAI Press. pp. 890−97. https://doi.org/10.1609/aaai.v33i01.3301890

[35]

Wu J, Fu J, Ji H, Liu L. 2023. Graph convolutional dynamic recurrent network with attention for traffic forecasting. Applied Intelligence 00:1−15

doi: 10.1007/s10489-023-04621-5
[36]

Ni Q, Zhang M. 2022. STGMN: A gated multi-graph convolutional network framework for traffic flow prediction. Applied Intelligence 52:15026−39

doi: 10.1007/s10489-022-03224-w
[37]

Yu H, Wu Z, Wang S, Wang Y and Ma X. 2017. Spatiotemporal recurrent convolutional networks for traffic prediction in transportation networks. Sensors 17(7):1501

doi: 10.3390/s17071501
[38]

Yao H, Tang X, Wei H, Zheng G, Li Z. 2019. Revisiting spatial-temporal similarity: A deep learning framework for traffic prediction. 33rd Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, Hawaii, USA, 2019. Palo Alto, California, USA: AAAI Press. pp. 5668−75. https://doi.org/10.1609/aaai.v33i01.33015668

[39]

Ma X, Dai Z, He Z, Ma J, Wang Y, et al. 2017. Learning traffic as images: a deep convolutional neural network for large-scale transportation network speed prediction. Sensors 17(4):818

doi: 10.3390/s17040818
[40]

Khaleghi B, Khamis A, Karray FO, Razavi SN. 2013. Multi-sensor data fusion: A review of the state-of-the-art. Information Fusion 14(1):28−44

doi: 10.1016/j.inffus.2011.08.001
[41]

Castanedo F. 2013. A review of data fusion techniques. The Scientific World Journal 2013:704504

doi: 10.1155/2013/704504
[42]

Lu B, Shu Q, Ma G. 2019. Short-time traffic flow prediction based on multi-source traffic data fusion. Journal of Chongqing Jiaotong University (Natural Science) 5:13−19+56

doi: 10.3969/j.issn.1674-0696.2019.05.03
[43]

Xiang C, Yang P, Xiao F, Fan X. 2023. Urban traffic application: Traffic volume prediction. In Multi-dimensional Urban Sensing Using Crowdsensing Data. Singapore: Springer. pp. 113−50. https://doi.org/10.1007/978-981-19-9006-9_5

[44]

Cai B, Wang Y, Huang C, Liu J, Teng W. 2022. GLSNN network: A multi-scale spatiotemporal prediction model for urban traffic flow. Sensors 22:8880

doi: 10.3390/s22228880
[45]

Fang Z, Pan L, Chen L, Du Y, Gao Y. 2021. MDTP: a multi-source deep traffic prediction framework over spatio-temporal trajectory data. Proceedings of VLDB Endowment 14(8):1289−97

doi: 10.14778/3457390.3457394
[46]

Lin L, Li J, Chen F, Ye J, Huai J. 2018. Road traffic speed prediction: A probabilistic model fusing multi-source data. IEEE Transactions on Knowledge and Data Engineering 30(7):1310−23

doi: 10.1109/TKDE.2017.2718525
[47]

Zhang J, Zheng Y, Qi D. 2017. Deep spatio-temporal residual networks for citywide crowd flows prediction. Proceedings of the 31st AAAI Conference on Artificial Intelligence (AAAI'17), San Francisco, California, USA, 2017. Palo Alto, California USA: AAAI Press. pp. 1655−61. https://doi.org/10.1609/aaai.v31i1.10735

[48]

Zhang Q, Jin Q, Chang J, Xiang S, Pan C. 2018. Kernel-weighted graph convolutional network: A deep learning approach for traffic forecasting. 24th International Conference on Pattern Recognition (ICPR), Beijing, China, 2018. USA: IEEE. pp. 1018−23. https://doi.org/10.1109/ICPR.2018.8545106

[49]

Hu J, Guo C, Yang B, Jensen CS. 2019. Stochastic weight completion for road networks using graph convolutional networks. IEEE 35th International Conference on Data Engineering (ICDE), Macao, China, 2019. USA: IEEE. pp: 1274−85. https://doi.org/10.1109/ICDE.2019.00116

[50]

Luo X, Peng J, Liang J. 2022. Directed hypergraph attention network for traffic forecasting. IET Intelligent Transport Systems 16(4):85−98

doi: 10.1049/itr2.12130
[51]

Li J, Han Z, Cheng H, Su J, Wang P, et al. 2019. Predicting path failure in time-evolving graphs. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD '19), Anchorage, USA, 2019. New York, United States: Association for Computing Machinery. pp: 1279−89. https://doi.org/10.1145/3292500.3330847

[52]

Zhao L, Song Y, Zhang C, Liu Y, Wang P. 2020. T-GCN: A temporal graph convolutional network for traffic prediction. IEEE Transactions on Intelligent Transportation Systems 21:3848−58

doi: 10.1109/TITS.2019.2935152
[53]

Yu JJQ, Gu J. 2019. Real-time traffic speed estimation with graph convolutional generative autoencoder. IEEE Transactions on Intelligent Transportation Systems 20(10):3940−51

doi: 10.1109/TITS.2019.2910560
[54]

Huang Y, Weng Y, Yu S, Chen X. 2019. Diffusion convolutional recurrent neural network with rank influence learning for traffic forecasting. 18th IEEE International Conference on Trust, Security and Privacy in Computing and Communications/13th IEEE International Conference on Big Data Science and Engineering (TrustCom/BigDataSE), Rotorua, New Zealand, 2019. USA: IEEE. pp. 678–85. https://doi.org/10.1109/TrustCom/BigDataSE.2019.00096

[55]

Li F, Feng J, Yan H, Jin G, Yang F, et al. 2023. Dynamic graph convolutional recurrent network for traffic prediction: Benchmark and solution. ACM Transactions on Knowledge Discovery from Data 17(1):1−12

doi: 10.1145/3532611
[56]

Guo S, Lin Y, Feng N, Song C, Wan H. 2019. Attention based spatial temporal graph convolutional networks for traffic flow forecasting. Proceeding of The 33rd AAAI Conference on Artificial Intelligence, Honolulu, Hawaii, USA, 2019. Palo Alto, California USA: AAAI Press. pp: 922−29. https://doi.org/10.1609/aaai.v33i01.3301922

[57]

Ge L, Li H, Liu J, Zhou A. 2019. Temporal graph convolutional networks for traffic speed prediction considering external factors. 20th IEEE International Conference on Mobile Data Management (MDM), Hong Kong, China, 2019. USA: IEEE. pp: 234−42. https://doi.org/10.1109/MDM.2019.00-52

[58]

Salort Sánchez C, Wieder A, Sottovia P, Bortoli S, Baumbach J. 2020. GANNSTER: Graph-Augmented Neural Network Spatio-Temporal Reasoner for Traffic Forecasting. International Workshop on Advanced Analytics and Learning on Temporal Data (AALTD), eds. Lemaire V, Malinowski S, Bagnall A, Guyet T, Tavenard R, et al. vol 12588. Switzerland: Springer, Cham. pp. 63−76. https://doi.org/10.1007/978-3-030-65742-0_5

[59]

Zhang Y, Wang S, Chen B, Cao J. 2019. GCGAN: generative adversarial nets with graph CNN for network-scale traffic prediction. International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, 2019. USA: IEEE. pp. 1−8. https://doi.org/10.1109/IJCNN.2019.8852211

[60]

Chai D, Wang L, Yang Q. 2018. Bike flow prediction with multi-graph convolutional networks. Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (SIGSPATIAL '18), Seattle, Washington, 2018. New York: Association for Computing Machinery. pp. 397−400. https://doi.org/10.1145/3274895.3274896

[61]

Han Y, Wang S, Ren Y, Wang C, Gao P, et al. 2019. Predicting Station-Level Short-Term Passenger Flow in a Citywide Metro Network Using Spatiotemporal Graph Convolutional Neural Networks. ISPRS International Journal of Geo-Information 8(6):243

doi: 10.3390/ijgi8060243
[62]

Li Y, Yu R, Shahabi C, Liu Y. 2018. Diffusion convolutional recurrent neural network: Data-driven traffic forecasting. International Conference on Learning Representations 2018. https://arxiv.org/pdf/1707.01926v3.pdf

[63]

Jiang J, Han C, Xin W, Wang J. 2023. PDFormer: Propagation delay-aware dynamic long-range transformer for traffic flow prediction. Proceeding of 37th AAAI Conference on Artificial Intelligence, Washington DC, USA, 2023. Washington, DC, USA: AAAI Press. pp. 4365−73. https://doi.org/10.1609/aaai.v37i4.25556

[64]

Deng P, Zhao Y, Liu J, Jia X, Wang M. 2023. Spatio-temporal neural structural causal models for bike flow prediction. Proceeding of 37th AAAI Conference on Artificial Intelligence, Washington DC, USA, 2023. Washington, DC, USA: AAAI Press. pp. 4242−49. https://doi.org/10.1609/aaai.v37i4.25542

[65]

Guo M, Xiao X, Lan J. 2009. A summary of the short-time traffic flow forecasting methods. Techniques of Automation and Applications 28(6):8−9

doi: 10.3969/j.issn.1003-7241.2009.06.003
[66]

Williams BM, Hoel LA. 2003. Modeling and forecasting vehicular traffic flow as a seasonal arima process: Theoretical basis and empirical results. Journal of Transportation Engineering 129(6):664−72

doi: 10.1061/(ASCE)0733-947X(2003)129:6(664)
[67]

Pan B, Demiryurek U, Shahabi C. 2012. Utilizing real-world transportation data for accurate traffic prediction. 2012 IEEE 12th International Conference on Data Mining, Brussels, Belgium, 2012. USA: IEEE. pp. 595-604. https://doi.org/10.1109/ICDM.2012.52

[68]

Apaydin H, Feizi H, Sattari MT, Colak MS, Shamshirband S, et al. 2020. Comparative analysis of recurrent neural network architectures for reservoir inflow forecasting. Water 12(5):1500

doi: 10.3390/w12051500
[69]

Zhao Z, Chen W, Wu X, Chen PCY, Liu J. 2017. LSTM network: a deep learning approach for short-term traffic forecast. IET Intelligent Transport Systems 11(2):68−75

doi: 10.1049/iet-its.2016.0208
[70]

Liu C. 2022. Short-term traffic flow prediction based on LSTM and its variants. Transport Energy Conservation & Environmental Protection 18(4):99−105

doi: 10.3969/j.issn.1673-6478.2022.04.019
[71]

Xue X, Jia X, Wang Y, Sheng Y. 2020. Expressway Traffic Flow Prediction Model Based on Bi-LSTM Neural Networks. 2020 4th International Conference on Traffic Engineering and Transportation System, IOP Conference Series: Earth and Environmental Science, Dalian, China, 2020. UK: IOP publishing. 587:012007

[72]

Fu R, Zhang Z, Li L. 2016. Using LSTM and GRU neural network methods for traffic flow prediction. 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC), Wuhan, China, 2016. USA: IEEE. pp. 324−28. https://doi.org/10.1109/YAC.2016.7804912

[73]

Bai S, Kolter JZ, Koltun V. 2018. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. ArXiv In press

doi: 10.48550/arXiv.1803.01271
[74]

Wu Z, Pan S, Long G, Jiang J, Zhang C. 2019. Graph wavenet for deep spatial-temporal graph modeling. Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI-19). California, USA: International Joint Conferences on Artificial Intelligence Organization. pp. 1907−13. https://doi.org/10.24963/ijcai.2019/264

[75]

Ren H, Kang J, Zhang K. 2022. Spatio-temporal graph-TCN neural network for traffic flow prediction. 19th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP), Chengdu, China, 2022. USA: IEEE. pp. 1-4. https://doi.org/10.1109/ICCWAMTIP56608.2022.10016530

[76]

Sun Y, Jiang X, Hu Y, Duan F, Guo K, et al. 2022. Dual dynamic spatial-temporal graph convolution network for traffic prediction. IEEE Transactions on Intelligent Transportation Systems 23(12):23680−93

doi: 10.1109/TITS.2022.3208943
[77]

Gao H, Jia H, Yang L, Li R. 2022. An Improved CEEMDAN-FE-TCN Model for Highway Traffic Flow Prediction. Journal of Advanced Transportation 2022:2265000

doi: 10.1155/2022/2265000
[78]

Brauwers G, Frasincar F. 2023. A general survey on attention mechanisms in deep learning. IEEE Transactions on Knowledge and Data Engineering 35(4):3279−98

doi: 10.1109/TKDE.2021.3126456
[79]

Zhang Z, Jiao X. 2021. A deep network with analogous self-attention for short-term traffic flow prediction. IET Intelligent Transport Systems 15(7):902−15

doi: 10.1049/itr2.12070
[80]

Zhang H, Zou Y, Yang X, Yang H. 2022. A temporal fusion transformer for short-term freeway traffic speed multistep prediction. Neurocomputing 500:329−40

doi: 10.1016/j.neucom.2022.05.083
[81]

Cai L, Janowicz K, Mai G, Yan B, Zhu R. 2020. Traffic transformer: Capturing the continuity and periodicity of time series for traffic forecasting. Transactions in GIS 24:736−55

doi: 10.1111/tgis.12644
[82]

Tedjopurnomo DA, Choudhury FM, Qin AK. 2023. TrafFormer: A transformer model for predicting long-term traffic. ArXiv In press

doi: 10.48550/arXiv.2302.12388
[83]

Xu J, Deng D, Demiryurek U, Shahabi C, van der Schaar M. 2015. Mining the situation: Spatiotemporal traffic prediction with big data. IEEE Journal of Selected Topics in Signal Processing 9(4):702−15

doi: 10.1109/JSTSP.2015.2389196
[84]

Min W, Wynter L. 2011. Real-time road traffic prediction with spatio-temporal correlations. Transportation Research Part C:Emerging Technologies 19(4):606−16

doi: 10.1016/j.trc.2010.10.002
[85]

Zhou J, Cui G, Hu S, Zhang Z, Yang C, et al. 2020. Graph neural networks: A review of methods and applications. AI Open 1:57−81

doi: 10.1016/j.aiopen.2021.01.001
[86]

Liu Q, Li J, Lu Z. 2021. ST-Tran: Spatial-temporal transformer for cellular traffic prediction. IEEE Communications Letters 25(10):3325−29

doi: 10.1109/LCOMM.2021.3098557
[87]

Feng A, Tassiulas L. 2022. Adaptive Graph Spatial-Temporal Transformer Network for Traffic Forecasting. Proceedings of the 31st ACM International Conference on Information & Knowledge Management (CIKM '22), Atlanta, USA, 2022. New York, United States: Association for Computing Machinery. pp. 3933−37. https://doi.org/10.1145/3511808.3557540

[88]

Fang Y, Jiang J, He Y. 2021. Traffic speed prediction based on LSTM-Graph attention network (L-GAT). 4th International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE), Changsha, China, 2021. USA: IEEE. pp. 788−93. https://doi.org/10.1109/AEMCSE51986.2021.00163

[89]

Guo H, Xie K. 2021. Research on traffic forecasting based on graph structure generation. 16th International Conference on Computer Science & Education (ICCSE), Lancaster, United Kingdom, 2021. USA: IEEE. pp. 855−58. https://doi.org/10.1109/ICCSE51940.2021.9569274

[90]

Yeghikyan G, Opolka FL, Nanni M, Lepri B, Liò P. 2020. Learning mobility flows from urban features with spatial interaction models and neural networks. IEEE International Conference on Smart Computing (SMARTCOMP), Bologna, Italy, 2020. USA: IEEE. pp. 57−64. https://doi.org/10.1109/SMARTCOMP50058.2020.00028

[91]

Zhang W, Yao R, Du X, Liu Y, Wang R, et al. 2023. Traffic flow prediction under multiple adverse weather based on self-attention mechanism and deep learning models. Physica A: Statistical Mechanics and its Applications 625:128988

doi: 10.1016/j.physa.2023.128988
[92]

Dong L, Zhang X, Liu L. 2022. Deep Spatial-Temporal Network Based on Residual Networks and Dilated Convolution for Traffic Flow Prediction. IEEE 7th International Conference on Intelligent Transportation Engineering (ICITE), Beijing, China, 2022. USA: IEEE. pp. 284−89. https://doi.org/10.1109/ICITE56321.2022.10101467

[93]

Sun K, Ren Q, Jin H, Lv X. 2022. Deep Spatio-Temporal Residual Shrinkage Networks for Traffic Prediction. IEEE 24th International Conference on High Performance Computing & Communications, Hainan, China, 2022. USA: IEEE. pp. 1036−41. https://doi.org/10.1109/HPCC-DSS-SmartCity-DependSys57074.2022.00164

[94]

Zhao Y, Deng P, Liu J, Jia X, Wang M. 2023. Causal conditional hidden Markov model for multimodal traffic prediction. Proceeding of 37th AAAI Conference on Artificial Intelligence, Washington DC, USA, 2023. Washington, DC, USA: AAAI Press. pp. 4929−36. https://doi.org/10.1609/aaai.v37i4.25619

[95]

Liu C, Sun X, Wang J, Tang H, Li T, et al. 2020. Learning causal semantic representation for out-of-distribution prediction. arXiv In press

doi: 10.48550/arXiv.2011.01681
[96]

Koesdwiady A, Soua R, Karray F. 2016. Improving traffic flow prediction with weather information in connected cars: A deep learning approach. IEEE Transactions on Vehicular Technology 65:9508−17

doi: 10.1109/TVT.2016.2585575
[97]

Yuan L, Zeng Y, Chen H, Jin J. 2022. Terminal Traffic Situation Prediction Model under the Influence of Weather Based on Deep Learning Approaches. Aerospace 9(10):580

doi: 10.3390/aerospace9100580
[98]

Fan Z. 2023. Short-term traffic flow prediction method with multiple factors and deep learning. 2023 IEEE 3rd International Conference on Electronic Technology, Communication and Information (ICETCI), Changchun, China, 26−28 May 2023, pp.1237−43. USA: IEEE. https://doi.org/10.1109/ICETCI57876.2023.10176734

[99]

Lai Y, Chen S, Wang S, Lin B. 2022. A weather-based traffic prediction system using big data techniques. 12th International Conference on Advanced Computer Information Technologies (ACIT), Ruzomberok, Slovakia, 2022. USA: IEEE. pp: 379-83. https://doi.org/10.1109/ACIT54803.2022.9913125

[100]

Wang M, Tian S, Chen C, Zhong J. 2020. Short-time traffic flow forecast with weather characteristics. International Conference on Computer Communication and Network Security (CCNS), Xi'an, China, 2020. USA: IEEE. pp: 142−45. https://doi.org/10.1109/CCNS50731.2020.00039

[101]

Zhang W, Yao R, Du X, Ye J. 2021. Hybrid deep spatio-temporal models for traffic flow prediction on holidays and under adverse weather. IEEE Access 9:157165−81

doi: 10.1109/ACCESS.2021.3127584
[102]

Yao R, Zhang W, Long M. 2021. DLW-Net model for traffic flow prediction under adverse weather. Transportmetrica B: Transport Dynamics 10:499−524

doi: 10.1080/21680566.2021.2008280
[103]

Li T, Ma J, Lee C. 2020. Markov-based time series modeling framework for traffic-network state prediction under various external conditions. Journal of Transportation Engineering, Part A: Systems 146(6):04020042

doi: 10.1061/jtepbs.0000347
[104]

Shabarek A, Chien S, Hadri S. 2020. Deep learning framework for freeway speed prediction in adverse weather. Transportation Research Record: Journal of the Transportation Research Board 2674(10):28−41

doi: 10.1177/0361198120947421
[105]

Gao Y, Chiang Y, Zhang X, Zhang M. 2022. Traffic volume prediction for scenic spots based on multi-source and heterogeneous data. Transactions in GIS 26:2415−39

doi: 10.1111/tgis.12975
[106]

Song C, Lin Y, Guo S, Wan H. 2020. Spatial-temporal synchronous graph convolutional networks: A new framework for spatial-temporal network data forecasting. Proceedings of the AAAI Conference on Artificial Intelligence, New York, USA, 2020. Palo Alto, California USA: AAAI Press. pp: 914−21. https://doi.org/10.1609/aaai.v34i01.5438