[1]

Dai A. 2013. Increasing drought under global warming in observations and models. Nature Climate Change 3:52−58

doi: 10.1038/nclimate1633
[2]

Haghverdi A, Reiter M, Singh A, Sapkota A. 2021. Hybrid bermudagrass and tall fescue turfgrass irrigation in central California: II. assessment of NDVI, CWSI, and canopy temperature dynamics. Agronomy 11:1733

doi: 10.3390/agronomy11091733
[3]

Horst GL, Engelke MC, Meyers W. 1984. Assessment of visual evaluation techniques. Agronomy Journal 76:619−622

doi: 10.2134/agronj1984.00021962007600040027x
[4]

Sherwood RT, Berg CC, Hoover MR, Zeiders KE. 1983. Illusions in visual assessment of Stagonospora leaf spot of orchardgrass. Phytopathology 73:173−77

doi: 10.1094/Phyto-73-173
[5]

Jiang Y, Yang Y. 2022. High-throughput phenotyping for plant growth and biomass yield of switchgrass under a controlled environment. Grass Research 2:4

doi: 10.48130/gr-2022-0004
[6]

Mishra P, Feller T, Schmuck M, Nicol A, Nordon A. 2019. Early detection of drought stress in Arabidopsis thaliana utilsing a portable hyperspectral imaging setup. Proc. 2019 10th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS), Amsterdam, Netherlands, September 2019, pp 1–5. Netherlands: Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/WHISPERS.2019.8921077

[7]

Damm A, Guanter L, Laurent VCE, Schaepman ME, Schickling A, et al. 2014. FLD-based retrieval of sun-induced chlorophyll fluorescence from medium spectral resolution airborne spectroscopy data. Remote Sensing of Environment 147:256−66

doi: 10.1016/j.rse.2014.03.009
[8]

Moss RA, Loomis WE. 1952. Absorption spectra of leaves. I. the visible spectrum. Plant Physiology 27:370−91

doi: 10.1104/pp.27.2.370
[9]

Li L, Zhang Q, Huang D. 2014. A review of imaging techniques for plant phenotyping. Sensors 14:20078−111

doi: 10.3390/s141120078
[10]

Bhandari S, Raheja A, Chaichi M, Pham F, Sherman T, et al. 2019. Comparing the effectiveness of hyperspectral and multispectral data in detecting citrus nitrogen and water stresses. Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping IV, Baltimore, MD, USA, 2019. USA: Services Integration in Pervasive Environments. https://doi.org/10.1117/12.2518822

[11]

Vines PL, Zhang J. 2022. High-throughput plant phenotyping for improved turfgrass breeding applications. Grass Research 2:1

doi: 10.48130/gr-2022-0001
[12]

Kumar P, Eriksen RL, Simko I, Mou B. 2021. Molecular mapping of water-stress responsive genomic loci in lettuce (Lactuca spp.) using kinetics chlorophyll fluorescence, hyperspectral imaging and machine learning. Frontiers in Genetics 12:634554

doi: 10.3389/fgene.2021.634554
[13]

Chaerle L, Leinonen I, Jones HG, Van Der Straeten D. 2007. Monitoring and screening plant populations with combined thermal and chlorophyll fluorescence imaging. Journal of Experimental Botany 58:773−84

doi: 10.1093/jxb/erl257
[14]

Badzmierowski MJ, McCall DS, Evanylo G. 2019. Using hyperspectral and multispectral indices to detect water stress for an urban turfgrass system. Agronomy 9:439

doi: 10.3390/agronomy9080439
[15]

De Cannière S, Vereecken H, Defourny P, Jonard F. 2022. Remote sensing of instantaneous drought stress at canopy level using sun-induced chlorophyll fluorescence and canopy reflectance. Remote Sensing 14:2642

doi: 10.3390/rs14112642
[16]

Liu Q, Zhang F, Zhao X. 2022. The superiority of solar-induced chlorophyll fluorescence sensitivity over other vegetation indices to drought. Journal of Arid Environments 204:104787

doi: 10.1016/j.jaridenv.2022.104787
[17]

Berger K, Machwitz M, Kycko M, Kefauver SC, Van Wittenberghe S, et al. 2022. Multi-sensor spectral synergies for crop stress detection and monitoring in the optical domain: a review. Remote Sensing of Environment 280:113198

doi: 10.1016/j.rse.2022.113198
[18]

Damm A, Guanter L, Verhoef W, Schläpfer D, Garbari S, et al. 2015. Impact of varying irradiance on vegetation indices and chlorophyll fluorescence derived from spectroscopy data. Remote Sensing of Environment 156:202−15

doi: 10.1016/j.rse.2014.09.031
[19]

Asaari MSM, Mertens S, Dhondt S, Inzé D, Wuyts N, et al. 2019. Analysis of hyperspectral images for detection of drought stress and recovery in maize plants in a high-throughput phenotyping platform. Computers and Electronics in Agriculture 162:749−58

doi: 10.1016/j.compag.2019.05.018
[20]

Kim Y, Glenn DM, Park J, Ngugi HK, Lehman BL. 2011. Hyperspectral image analysis for water stress detection of apple trees. Computers and Electronics in Agriculture 77:155−160

doi: 10.1016/j.compag.2011.04.008
[21]

Marshall M, Thenkabail P, Biggs T, Post K. 2016. Hyperspectral narrowband and multispectral broadband indices for remote sensing of crop evapotranspiration and its components (transpiration and soil evaporation). Agricultural and Forest Meteorology 218:122−34

doi: 10.1016/j.agrformet.2015.12.025
[22]

Sun P, Wahbi S, Tsonev T, Haworth M, Liu S, et al. 2014. On the use of leaf spectral indices to assess water status and photosynthetic limitations in Olea europaea L. during water-stress and recovery. PLoS ONE 9:e105165

doi: 10.1371/journal.pone.0105165
[23]

Panigada C, Rossini M, Meroni M, Cilia C, Busetto L, et al. 2014. Fluorescence, PRI and canopy temperature for water stress detection in cereal crops. International Journal of Applied Earth Observation and Geoinformation 30:167−78

doi: 10.1016/j.jag.2014.02.002
[24]

Jansen M, Gilmer F, Biskup B, Nagel KA, Rascher U, et al. 2009. Simultaneous phenotyping of leaf growth and chlorophyll fluorescence via GROWSCREEN FLUORO allows detection of stress tolerance in Arabidopsis thaliana and other rosette plants. Functional Plant Biology 36:902−14

doi: 10.1071/FP09095
[25]

Lu C, Zhang J. 1999. Effects of water stress on photosystem II photochemistry and its thermostability in wheat plants. Journal of Experimental Botany 50:1199−206

doi: 10.1093/jxb/50.336.1199
[26]

Moustakas M, Sperdouli I, Moustaka J. 2022. Early drought stress warning in plants: color pictures of photosystem II photochemistry. Climate 10:179

doi: 10.3390/cli10110179
[27]

Beard JB. 1973. Turfgrass: science and culture. x, 658 pp. Engle-wood Cliffs, NJ: Prentice Hall.

[28]

Katuwal KB, Schwartz B, Jespersen D. 2020. Desiccation avoidance and drought tolerance strategies in bermudagrasses. Environmental and Experimental Botany 171:103947

doi: 10.1016/j.envexpbot.2019.103947
[29]

Rublee E, Rabaud V, Konolige K, Bradski G. 2011. ORB: an efficient alternative to SIFT or SURF. Proc. 2011 International Conference on Computer Vision, Barcelona, Spain, 2011. pp 2564−71. Spain: Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/ICCV.2011.6126544

[30]

Kautsky H, Hirsch A. 1931. Neue versuche zur kohlensäureassimilation. Naturwissenschaften 19:964

doi: 10.1007/BF01516164
[31]

Govindjee E. 1995. Sixty-three years since Kautsky: chlorophyll a fluorescence. Australian Journal of Plant Physiology 22:131−60

doi: 10.1071/pp9950131
[32]

Liang X, Su D, Yin S, Wang Z. 2009. Leaf water absorption and desorption functions for three turfgrasses. Journal of Hydrology 376:243−48

doi: 10.1016/j.jhydrol.2009.07.035
[33]

Leinauer B, VanLeeuwen DM, Serena M, Schiavon M, Sevostianova E. 2014. Digital image analysis and spectral reflectance to determine turfgrass quality. Agronomy Journal 106:1787−94

doi: 10.2134/agronj14.0088
[34]

Hu L, Wang Z, Huang B. 2013. Effects of cytokinin and potassium on stomatal and photosynthetic recovery of Kentucky bluegrass from drought stress. Crop Science 53(1):221−31

doi: 10.2135/cropsci2012.05.0284
[35]

Rahimi A, Hosseini SM, Pooryoosef M, Fateh I. 2010. Variation of leaf water potential, relative water content and SPAD under gradual drought stress and stress recovery in two medicinal species of Plantago ovata and P. psyllium. Plant Ecophysiology 2:53−60

[36]

Ji L, Peters, AJ. 2007. Performance evaluation of spectral vegetation indices using a statistical sensitivity function. Remote Sensing of Environment 106:59−65

doi: 10.1016/j.rse.2006.07.010
[37]

Zhou X, Huang W, Zhang J, Kong W, Casa R, et al. 2019. A novel combined spectral index for estimating the ratio of carotenoid to chlorophyll content to monitor crop physiological and phenological status. International Journal of Applied Earth Observation and Geoinformation 76:128−42

doi: 10.1016/j.jag.2018.10.012
[38]

Guo J, Gao Y, Wang Q, Fei D, Liu J. 2014. Effect of nitrogen stress on relationship of PRI and LUE during winter wheat growth period. Proceedings Volume 9263, Multispectral, Hyperspectral, and Ultraspectral Remote Sensing Technology, Techniques and Applications V, SPIE Asia-Pacific Remote Sensing, 2014, Beijing, China, 9263: 216–23. Bellingham, WA: SPIE. https://doi.org/10.1117/12.2068297

[39]

Suárez L, Zarco-Tejada PJ, Berni JAJ, González-Dugo V, Fereres E. 2009. Modelling PRI for water stress detection using radiative transfer models. Remote Sensing of Environment 113:730−44

doi: 10.1016/j.rse.2008.12.001
[40]

Zhang Z, Liu M, Liu X, Zhou G. 2018. A new vegetation index based on multitemporal Sentinel-2 images for discriminating heavy metal stress levels in rice. Sensors 18:2172

doi: 10.3390/s18072172
[41]

Smirnoff N. 1993. The role of active oxygen in the response of plants to water deficit and desiccation. New Phytologist 125:27−58

doi: 10.1111/j.1469-8137.1993.tb03863.x
[42]

Das PK, Seshasai MVR. 2015. Multispectral sensor spectral resolution simulations for generation of hyperspectral vegetation indices from Hyperion data. Geocarto International 30:686−700

doi: 10.1080/10106049.2014.973065
[43]

Bhandari M, Baker S, Rudd JC, Ibrahim AMH, Chang A, et al. 2021. Assessing the effect of drought on winter wheat growth using unmanned aerial system (UAS)-based phenotyping. Remote Sensing 13:1144

doi: 10.3390/rs13061144
[44]

Katuwal KB, Jespersen D, Bhattarai U, Chandra A, Kenworthy KE, et al. 2022. Multilocational screening identifies new drought-tolerant, warm-season turfgrasses. Crop Science 62:1614−30

doi: 10.1002/csc2.20726
[45]

Jiang Y, Liu H, Cline V. 2009. Correlations of leaf relative water content, canopy temperature, and spectral reflectance in perennial ryegrass under water deficit conditions. HortScience 44:459−62

doi: 10.21273/HORTSCI.44.2.459
[46]

Hong M, Bremer DJ, van der Merwe D. 2019. Using small unmanned aircraft systems for early detection of drought stress in turfgrass. Crop Science 59:2829−44

doi: 10.2135/cropsci2019.04.0212
[47]

Eitel JUH, Vierling LA, Litvak ME, Long DS, Schulthess U, et al. 2011. Broadband, red-edge information from satellites improves early stress detection in a New Mexico conifer woodland. Remote Sensing of Environment 115:3640−46

doi: 10.1016/j.rse.2011.09.002
[48]

Bolhàr-Nordenkampf HR, Öquist G. 1993. Chlorophyll fluorescence as a tool in photosynthesis research. In Photosynthesis and Production in a Changing Environment, eds Hall DO, Scurlock JMO, Bolhàr-Nordenkampf HR, Leegood RC, Long LP. xxvii, 477 pp. Dordrecht: Springer Netherlands. pp 193–206. https://doi.org/10.1007/978-94-011-1566-7_12

[49]

Murchie EH, Lawson T. 2013. Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. Journal of Experimental Botany 64:3983−98

doi: 10.1093/jxb/ert208
[50]

Kramer DM, Johnson G, Kiirats O, Edwards GE. 2004. New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynthesis Research 79:209−18

doi: 10.1023/B:PRES.0000015391.99477.0d
[51]

Kalaji HM, Schansker G, Brestic M, Bussotti F, Calatayud A, et al. 2017. Frequently asked questions about chlorophyll fluorescence, the sequel. Photosynthesis Research 132:13−66

doi: 10.1007/s11120-016-0318-y
[52]

Ruban AV. 2016. Nonphotochemical chlorophyll fluorescence quenching: mechanism and effectiveness in protecting plants from photodamage. Plant Physiology 170:1903−16

doi: 10.1104/pp.15.01935
[53]

Belgio E, Johnson MP, Jurić S, Ruban AV. 2012. Higher plant photosystem II light-harvesting antenna, not the reaction center, determines the excited-state lifetime—both the maximum and the nonphotochemically quenched. Biophysical Journal 102:2761−71

doi: 10.1016/j.bpj.2012.05.004
[54]

Shin YK, Bhandari SR, Jo JS, Song JW, Lee JG. 2021. Effect of drought stress on chlorophyll fluorescence parameters, phytochemical contents, and antioxidant activities in lettuce seedlings. Horticulturae 7:238

doi: 10.3390/horticulturae7080238