[1] |
Hammam ARA. 2019. Technological, applications, and characteristics of edible films and coatings: a review. SN Applied Sciences 1:1−11 doi: 10.1007/s42452-019-0660-8 |
[2] |
Liu B, Xu H, Zhao H, Liu W, Zhao L, Li Y. 2017. Preparation and characterization of intelligent starch/PVA films for simultaneous colorimetric indication and antimicrobial activity for food packaging applications. Carbohydrate Polymers 157:842−49 doi: 10.1016/j.carbpol.2016.10.067 |
[3] |
Mushtaq M, Gani A, Gani A, Punoo HA, Masoodi FA. 2018. Use of pomegranate peel extract incorporated zein film with improved properties for prolonged shelf life of fresh Himalayan cheese (Kalari/kradi). Innovative Food Science & Emerging Technologies 48:25−32 doi: 10.1016/j.ifset.2018.04.020 |
[4] |
Zhang X, Lu S, Chen X. 2014. A visual pH sensing film using natural dyes from Bauhinia blakeana Dunn. Sensors and Actuators B: Chemical 198:268−73 doi: 10.1016/j.snb.2014.02.094 |
[5] |
Musso YS, Salgado PR, Mauri AN. 2017. Smart edible films based on gelatin and curcumin. Food Hydrocolloids 66:8−15 doi: 10.1016/j.foodhyd.2016.11.007 |
[6] |
Zhang K, Huang TS, Yan H, Hu X, Ren T. 2020. Novel pH-sensitive films based on starch/polyvinyl alcohol and food anthocyanins as a visual indicator of shrimp deterioration. International Journal of Biological Macromolecules 145:768−76 doi: 10.1016/j.ijbiomac.2019.12.159 |
[7] |
Ezati P, Rhim JW. 2020. pH-responsive chitosan-based film incorporated with alizarin for intelligent packaging applications. Food Hydrocolloids 102:105629 doi: 10.1016/j.foodhyd.2019.105629 |
[8] |
Qin Y, Liu Y, Zhang X, Liu J. 2020. Development of active and intelligent packaging by incorporating betalains from red pitaya (Hylocereus polyrhizus) peel into starch/polyvinyl alcohol films. Food Hydrocolloids 100:105410 doi: 10.1016/j.foodhyd.2019.105410 |
[9] |
Choi I, Lee JY, Lacroix M, Han J. 2017. Intelligent pH indicator film composed of agar/potato starch and anthocyanin extracts from purple sweet potato. Food Chemistry 218:122−28 doi: 10.1016/j.foodchem.2016.09.050 |
[10] |
Rawdkuen S, Faseha A, Benjakul S, Kaewprachu P. 2020. Application of anthocyanin as a color indicator in gelatin films. Food Bioscience 36:100603 doi: 10.1016/j.fbio.2020.100603 |
[11] |
Yong H, Liu J. 2020. Recent advances in the preparation, physical and functional properties, and applications of anthocyanins-based active and intelligent packaging films. Food Packaging and Shelf Life 26:100550 doi: 10.1016/j.fpsl.2020.100550 |
[12] |
Fei P, Zeng F, Zheng S, Chen Q, Hu Y, et al. 2020. Acylation of blueberry anthocyanins with maleic acid: Improvement of the stability and its application potential in intelligent color indicator packing materials. Dyes and Pigments 184(1):108852 doi: 10.1016/j.dyepig.2020 |
[13] |
Castañeda-Ovando A, de Lourdes Pacheco-Hernández M, Páez-Hernández ME, Rodríguez JA, Galán-Vidal CA. 2009. Chemical studies of anthocyanins: A review. Food Chemistry 113:859−71 doi: 10.1016/j.foodchem.2008.09.001 |
[14] |
Chen H, Zhang M, Bhandari B, Yang C. 2020. Novel pH-sensitive films containing curcumin and anthocyanins to monitor fish freshness. Food Hydrocolloids 100:105438 doi: 10.1016/j.foodhyd.2019.105438 |
[15] |
Kang S, Wang H, Xia L, Chen M, Li L, et al. 2020. Colorimetric film based on polyvinyl alcohol/okra mucilage polysaccharide incorporated with rose anthocyanins for shrimp freshness monitoring. Carbohydrate Polymers 229:115402 doi: 10.1016/j.carbpol.2019.115402 |
[16] |
Sanchez-Gonzalez N, Jaime-Fonseca MR, San Martin-Martinez E, Zepeda LG. 2013. Extraction, Stability, and separation of betalains from Opuntia joconostle cv. using response surfaceMethodology. Journal of Agricultural and Food Chemistry 61:11995−2004 doi: 10.1021/jf401705h |
[17] |
Slatnar A, Stampar F, Veberic R, Jakopic J. 2015. HPLC-MSn identification of betalain profile of different beetroot (Beta vulgaris L. ssp. vulgaris) parts and cultivars. Journal of Food Science 80:C1952−C1958 doi: 10.1111/1750-3841.12977 |
[18] |
Li H, Deng Z, Liu R, Zhu H, Draves J, et al. 2015. Characterization of phenolics, betacyanins and antioxidant activities of the seed, leaf, sprout, flower and stalk extracts of three Amaranthus species. Journal of Food Composition and Analysis 37:75−81 doi: 10.1016/j.jfca.2014.09.003 |
[19] |
Robert P, Torres V, García P, Vergara C, Sáenz C. 2015. The encapsulation of purple cactus pear (Opuntia ficus-indica) pulp by using polysaccharide-proteins as encapsulating agents. LWT - Food Science and Technology 60:1039−45 doi: 10.1016/j.lwt.2014.10.038 |
[20] |
de Mello FR, Bernardo C, Dias CO, Gonzaga L, Amante ER, et al. 2015. Antioxidant properties, quantification and stability of betalains from pitaya (Hylocereus undatus) peel. Ciência Rural 45:323−28 doi: 10.1590/0103-8478cr20140548 |
[21] |
Hu H, Yao X, Qin Y, Yong H, Liu J. 2020. Development of multifunctional food packaging by incorporating betalains from vegetable amaranth (Amaranthus tricolor L.) into quaternary ammonium chitosan/fish gelatin blend films. International Journal of Biological Macromolecules 159:675−84 doi: 10.1016/j.ijbiomac.2020.05.103 |
[22] |
Yao X, Hu H, Qin Y, Liu J. 2020. Development of antioxidant, antimicrobial and ammonia-sensitive films based on quaternary ammonium chitosan, polyvinyl alcohol and betalains-rich cactus pears (Opuntia ficus-indica) extract. Food Hydrocolloids 106:105896 doi: 10.1016/j.foodhyd.2020.105896 |
[23] |
Gengatharan A, Dykes GA, Choo WS. 2015. Betalains: Natural plant pigments with potential application in functional foods. LWT - Food Science and Technology 64:645−49 doi: 10.1016/j.lwt.2015.06.052 |
[24] |
Gandía-Herrero F, Escribano J, García-Carmona F. 2016. Biological activities of plant pigments betalains. Critical reviews in food science and nutrition 56:937−45 doi: 10.1080/10408398.2012.740103 |
[25] |
Qin Y, Xu F, Yuan L, Hu H, Yao X, et al. 2020. Comparison of the physical and functional properties of starch/polyvinyl alcohol films containing anthocyanins and/or betacyanins. International Journal of Biological Macromolecules 163:898−909 doi: 10.1016/j.ijbiomac.2020.07.065 |
[26] |
Jamróz E, Kulawik P, Guzik P, Duda I. 2019. The verification of intelligent properties of furcellaran films with plant extracts on the stored fresh Atlantic mackerel during storage at 2 degrees C. Food Hydrocolloids 97:105211 doi: 10.1016/j.foodhyd.2019.105211 |
[27] |
Liu J, Wang H, Wang P, Guo M, Jiang S, et al. 2018. Films based on κ-carrageenan incorporated with curcumin for freshness monitoring. Food Hydrocolloids 83:134−42 doi: 10.1016/j.foodhyd.2018.05.012 |
[28] |
Mahmoud HK, Al-Sagheer AA, Reda FM, Mahgoub SA, Ayyat MS. 2017. Dietary curcumin supplement influence on growth, immunity, antioxidant status, and resistance to Aeromonas hydrophila in Oreochromis niloticus. Aquaculture 475:16−23 doi: 10.1016/j.aquaculture.2017.03.043 |
[29] |
Hasanzadeh S, Read MI, Bland AR, Majeed M, Jamialahmadi T, Sahebkar A. 2020. Curcumin: an inflammasome silencer. Pharmacological Research 159:104921 doi: 10.1016/j.phrs.2020.104921 |
[30] |
Zhang W, Chen C, Shi H, Yang M, Liu Y, et al. 2016. Curcumin is a biologically active copper chelator with antitumor activity. Phytomedicine 23:1−8 doi: 10.1016/j.phymed.2015.11.005 |
[31] |
Bajpai SK, Chand N, Ahuja S. 2015. Investigation of curcumin release from chitosan/cellulose micro crystals (CMC) antimicrobial films. International Journal of Biological Macromolecules 79:440−48 doi: 10.1016/j.ijbiomac.2015.05.012 |
[32] |
Kalaycıoğlu Z, Torlak E, Akın-Evingür G, Özen İ, Erim FB. 2017. Antimicrobial and physical properties of chitosan films incorporated with turmeric extract. International Journal of Biological Macromolecules 101:882−88 doi: 10.1016/j.ijbiomac.2017.03.174 |
[33] |
Zia J, Paul UC, Heredia-Guerrero JA, Athanassiou A, Fragouli D. 2019. Low-density polyethylene/curcumin melt extruded composites with enhanced water vapor barrier and antioxidant properties for active food packaging. Polymer 175:137−45 doi: 10.1016/j.polymer.2019.05.012 |
[34] |
Ma Q, Du L, Wang L. 2017. Tara gum/polyvinyl alcohol-based colorimetric NH3 indicator films incorporating curcumin for intelligent packaging. Sensors and Actuators B: Chemical 244:759−66 doi: 10.1016/j.snb.2017.01.035 |
[35] |
Wu C, Sun J, Chen M, Ge Y, Ma J, et al. 2019. Effect of oxidized chitin nanocrystals and curcumin into chitosan films for seafood freshness monitoring. Food Hydrocolloids 95:308−17 doi: 10.1016/j.foodhyd.2019.04.047 |
[36] |
Heaton JW, Marangoni AG. 1996. Chlorophyll degradation in processed foods and senescent plant tissues. Trends in Food Science & Technology 7:8−15 doi: 10.1016/0924-2244(96)81352-5 |
[37] |
Maciel VBV, Franco TT, Yoshida CMP. 2012. Alternative intelligent material for packaging using chitosan films as colorimetric temperature indicators. Polimeros-Ciencia E Tecnologia 22:318−24 doi: 10.1590/S0104-14282012005000054 |
[38] |
Ezati P, Tajik H, Moradi M, Molaei R. 2019. Intelligent pH-sensitive indicator based on starch-cellulose and alizarin dye to track freshness of rainbow trout fillet. International Journal of Biological Macromolecules 132:157−165 doi: 10.1016/j.ijbiomac.2019.03.173 |
[39] |
Ezati P, Tajik H, Moradi M. 2019. Fabrication and characterization of alizarin colorimetric indicator based on cellulose-chitosan to monitor the freshness of minced beef. Sensors and Actuators B: Chemical 285:519−28 doi: 10.1016/j.snb.2019.01.089 |
[40] |
Bertolino V, Cavallaro G, Milioto S, Lazzara G. 2020. Polysaccharides/halloysite nanotubes for smart bionanocomposite materials. Carbohydrate Polymers 245:116502 doi: 10.1016/j.carbpol.2020.116502 |
[41] |
Xu Y, Hua G, Hakkarainen M, Odelius K. 2018. Isosorbide as core component for tailoring biobased unsaturated polyester thermosets for a wide structure-property window. Biomacromolecules 19:3077−85 doi: 10.1021/acs.biomac.8b00661 |
[42] |
Liang T, Wang L. 2018. A pH-sensing film from tamarind seed polysaccharide with litmus lichen extract as an indicator. Polymers 10:13 doi: 10.3390/polym10010013 |
[43] |
Qin Y, Liu Y, Yong H, Liu J, Zhang X, et al. 2019. Preparation and characterization of active and intelligent packaging films based on cassava starch and anthocyanins from Lycium ruthenicum Murr. International Journal of Biological Macromolecules 134:80−90 doi: 10.1016/j.ijbiomac.2019.05.029 |
[44] |
Wu C, Li Y, Sun J, Lu Y, Tong C, et al. 2020. Novel konjac glucomannan films with oxidized chitin nanocrystals immobilized red cabbage anthocyanins for intelligent food packaging. Food Hydrocolloids 98:105245 doi: 10.1016/j.foodhyd.2019.105245 |
[45] |
Silva HMD, Mageste AB, Silva SJBE, Dias Ferreira GM, Ferreira GMD. 2020. Anthocyanin immobilization in carboxymethylcellulose/starch films: A sustainable sensor for the detection of Al (III) ions in aqueous matrices. Carbohydrate Polymers 230:115679 doi: 10.1016/j.carbpol.2019.115679 |
[46] |
Halász K, Csóka L. 2018. Black chokeberry (Aronia melanocarpa) pomace extract immobilized in chitosan for colorimetric pH indicator film application. Food Packaging and Shelf Life 16:185−93 doi: 10.1016/j.fpsl.2018.03.002 |
[47] |
Wei YC, Cheng CH, Ho YC, Tsai ML, Mi FL. 2017. Active gellan gum/purple sweet potato composite films capable of monitoring pH variations. Food Hydrocolloids 69:491−502 doi: 10.1016/j.foodhyd.2017.03.010 |
[48] |
Zeng P, Chen X, Qin Y, Zhang Y, Wang X, et al. 2019. Preparation and characterization of a novel colorimetric indicator film based on gelatin/polyvinyl alcohol incorporating mulberry anthocyanin extracts tor whim for monitoring fish freshness. Food Research International 126:108604 doi: 10.1016/j.foodres.2019.108604 |
[49] |
Liu Y, Cai Y, Jiang X, Wu J, Le X. 2016. Molecular interactions, characterization and antimicrobial activity of curcumin–chitosan blend films. Food Hydrocolloids 52:564−72 doi: 10.1016/j.foodhyd.2015.08.005 |
[50] |
Govindaraj P, Kandasubramanian B, Kodam KM. 2014. Molecular interactions and antimicrobial activity of curcumin (Curcuma longa) loaded polyacrylonitrile films. Materials Chemistry and Physics 147:934−41 doi: 10.1016/j.matchemphys.2014.06.040 |
[51] |
Espitia PJP, Du W, Avena-Bustillos RdJ, Soares NdFF, McHugh TH. 2014. Edible films from pectin: Physical-mechanical and antimicrobial properties - A review. Food Hydrocolloids 35:287−96 doi: 10.1016/j.foodhyd.2013.06.005 |
[52] |
Kanatt SR. 2020. Development of active/intelligent food packaging film containing Amaranthus leaf extract for shelf life extension of chicken/fish during chilled storage. Food Packaging and Shelf Life 24:100506 doi: 10.1016/j.fpsl.2020.100506 |
[53] |
Fu Y, Dudley EG. 2021. Antimicrobial-coated films as food packaging: A review. Comprehensive Reviews in Food Science and Food Safety 20:3404−37 doi: 10.1111/1541-4337.12769 |
[54] |
Nithya V, Murthy PSK, Halami PM. 2013. Development and application of active films for food packaging using antibacterial peptide of Bacillus licheniformis Me1. Journal of Applied Microbiology 115:475−83 doi: 10.1111/jam.12258 |
[55] |
Kalimuldina G, Turdakyn N, Abay I, Medeubayev A, Nurpeissova A, et al. 2020. A review of piezoelectric PVDF film by electrospinning and its applications. Sensors 20:5214 doi: 10.3390/s20185214 |
[56] |
Ghasemian S, Sahari MA, Barzegar M, Ahmadi Gavlighi H. 2017. Omega-3 PUFA concentration by a novel PVDF nano-composite membrane filled with nano-porous silica particles. Food Chemistry 230:454−62 doi: 10.1016/j.foodchem.2017.02.135 |
[57] |
Yap KL, Kong I, Abdul Kalam Saleena L, Pui LP. 2022. 3D printed gelatin film with Garcinia atroviridis extract. Journal of Food Science and Technology 59:4341−51 doi: 10.1007/s13197-022-05508-y |
[58] |
Yang F, Guo C, Zhang M, Bhandari B, Liu Y. 2019. Improving 3D printing process of lemon juice gel based on fluid flow numerical simulation. LWT 102:89−99 doi: 10.1016/j.lwt.2018.12.031 |
[59] |
Chi W, Cao L, Sun G, Meng F, Zhang C, et al. 2020. Developing a highly pH-sensitive κ-carrageenan-based intelligent film incorporating grape skin powder via a cleaner process. Journal of Cleaner Production 244:118862 doi: 10.1016/j.jclepro.2019.118862 |
[60] |
Ai Y, Wang G, Fang F, Zhang F, Liao H. 2022. Development of real-time intelligent films from red pitaya peel and its application in monitoring the freshness of pork. Journal of the Science of Food and Agriculture 102:5512−22 doi: 10.1002/jsfa.11906 |
[61] |
Zhang C, Sun G, Cao L, Wang L. 2020. Accurately intelligent film made from sodium carboxymethyl starch/κ-carrageenan reinforced by mulberry anthocyanins as an indicator. Food Hydrocolloids 108:106012 doi: 10.1016/j.foodhyd.2020.106012 |
[62] |
Ge Y, Li Y, Bai Y, Yuan C, Wu C, Hu Y. 2020. Intelligent gelatin/oxidized chitin nanocrystals nanocomposite films containing black rice bran anthocyanins for fish freshness monitorings. International Journal of Biological Macromolecules 155:1296−306 doi: 10.1016/j.ijbiomac.2019.11.101 |
[63] |
Moazami Goodarzi M, Moradi M, Tajik H, Forough M, Ezati P, et al. 2020. Development of an easy-to-use colorimetric pH label with starch and carrot anthocyanins for milk shelf life assessment. International Journal of Biological Macromolecules 153:240−47 doi: 10.1016/j.ijbiomac.2020.03.014 |
[64] |
Moradi M, Tajik H, Almasi H, Forough M, Ezati P. 2019. A novel pH-sensing indicator based on bacterial cellulose nanofibers and black carrot anthocyanins for monitoring fish freshness. Carbohydrate Polymers 222:115030 doi: 10.1016/j.carbpol.2019.115030 |
[65] |
Mohammadalinejhad S, Almasi H, Moradi M. 2020. Immobilization of Echium amoenum anthocyanins into bacterial cellulose film: A novel colorimetric pH indicator for freshness/spoilage monitoring of shrimp. Food Control 113:107169 doi: 10.1016/j.foodcont.2020.107169 |
[66] |
Yang Y, Yu X, Zhu Y, Zeng Y, Fang C, et al. 2022. Preparation and application of a colorimetric film based on sodium alginate/sodium carboxymethyl cellulose incorporated with rose anthocyanins. Food Chemistry 393:133342 doi: 10.1016/j.foodchem.2022.133342 |
[67] |
Guo Z, Zuo H, Ling H, Yu Q, Gou Q, et al. 2022. A novel colorimetric indicator film based on watermelon peel pectin and anthocyanins from purple cabbage for monitoring mutton freshness. Food Chemistry 383:131915 doi: 10.1016/j.foodchem.2021.131915 |
[68] |
Luchese CL, Abdalla VF, Spada JC, Tessaro IC. 2018. Evaluation of blueberry residue incorporated cassava starch film as pH indicator in different simulants and foodstuffs. Food Hydrocolloids 82:209−18 doi: 10.1016/j.foodhyd.2018.04.010 |
[69] |
Huang J, Chen M, Zhou Y, Li Y, Hu Y. 2020. Functional characteristics improvement by structural modification of hydroxypropyl methylcellulose modified polyvinyl alcohol films incorporating roselle anthocyanins for shrimp freshness monitoring. International Journal of Biological Macromolecules 162:1250−61 doi: 10.1016/j.ijbiomac.2020.06.156 |
[70] |
Zhang J, Zou X, Zhai X, Huang X, Jiang C, Holmes M. 2019. Preparation of an intelligent pH film based on biodegradable polymers and roselle anthocyanins for monitoring pork freshness. Food Chemistry 272:306−12 doi: 10.1016/j.foodchem.2018.08.041 |
[71] |
He Y, Lu L, Lin Y, Li R, Yuan Y, et al. 2022. Intelligent pH-sensing film based on polyvinyl alcohol/cellulose nanocrystal with purple cabbage anthocyanins for visually monitoring shrimp freshness. International Journal of Biological Macromolecules 218:900−8 doi: 10.1016/j.ijbiomac.2022.07.194 |
[72] |
Lin X, Li N, Xiao Q, Guo Y, Wei J, et al. 2022. Polyvinyl alcohol/starch-based film incorporated with grape skin anthocyanins and metal-organic framework crystals for colorimetric monitoring of pork freshness. Food Chemistry 395:133613 doi: 10.1016/j.foodchem.2022.133613 |
[73] |
Ma Q, Liang T, Cao L, Wang L. 2018. Intelligent poly (vinyl alcohol)-chitosan nanoparticles-mulberry extracts films capable of monitoring pH variations. International Journal of Biological Macromolecules 108:576−84 doi: 10.1016/j.ijbiomac.2017.12.049 |
[74] |
Bakouri H, Ziane A, Guemra K. 2023. Development of multifunctional packaging films based on arginine-modified chitosan/gelatin matrix and betacyanins from weed amaranth (A. hybridus). International Journal of Biological Macromolecules 230:123181 doi: 10.1016/j.ijbiomac.2023.123181 |
[75] |
Naghdi S, Rezaei M, Abdollahi M. 2021. A starch-based pH-sensing and ammonia detector film containing betacyanin of paperflower for application in intelligent packaging of fish. International Journal of Biological Macromolecules 191:161−70 doi: 10.1016/j.ijbiomac.2021.09.045 |
[76] |
He F, Kong Q, Jin Z, Mou H. 2020. Developing a unidirectionally permeable edible film based on κ-carrageenan and gelatin for visually detecting the freshness of grass carp fillets. Carbohydrate Polymers 241:116336 doi: 10.1016/j.carbpol.2020.116336 |
[77] |
Ren M, Cai Z, Chen L, Wahia H, Zhang L, et al. 2022. Preparation of zein/chitosan/eugenol/curcumin active films for blueberry preservation. International Journal of Biological Macromolecules 223:1054−66 doi: 10.1016/j.ijbiomac.2022.11.090 |
[78] |
Ezati P, Rhim JW. 2020. pH-responsive pectin-based multifunctional films incorporated with curcumin and sulfur nanoparticles. Carbohydrate Polymers 230:115638 doi: 10.1016/j.carbpol.2019.115638 |
[79] |
Lin W, Hong W, Sun Y, Huang J, Li Z. 2023. Triple-function chitosan-based film for pork and shrimp packaging. Food Chemistry 417:135903 doi: 10.1016/j.foodchem.2023.135903 |
[80] |
Mohseni-Shahri F, Mehrzad A, Khoshbin Z, Sarabi-Jamab M, Khanmohamadi F, et al. 2023. Polyphenol-loaded bacterial cellulose nanofiber as a green indicator for fish spoilage. International Journal of Biological Macromolecules 224:1174−82 doi: 10.1016/j.ijbiomac.2022.10.203 |
[81] |
Liu D, Zhang C, Pu Y, Chen S, Li H, et al. 2023. Novel colorimetric films based on polyvinyl alcohol/sodium carboxymethyl cellulose doped with anthocyanins and betacyanins to monitor pork freshness. Food Chemistry 404:134426 doi: 10.1016/j.foodchem.2022.134426 |
[82] |
Wang S, Xia P, Wang S, Liang J, Sun Y, et al. 2019. Packaging films formulated with gelatin and anthocyanins nano complexes: Physical properties, antioxidant activity and its application for olive oil protection. Food Hydrocolloids 96(11):617−24 doi: 10.1016/j.foodhyd.2019.06.004 |
[83] |
Choi I, Lee SE, Chang Y, Lacroix M, Han J. 2018. Effect of oxidized phenolic compounds on cross-linking and properties of biodegradable active packaging film composed of turmeric and gelatin. LWT-Food Science and Technology 93:427−33 doi: 10.1016/j.lwt.2018.03.065 |
[84] |
Stoll L, Costa TMH, Jablonski A, Flôres SH, de Oliveira Rios A. 2016. Microencapsulation of anthocyanins with different wall materials and its application in active biodegradable films. Food and Bioprocess Technology 9:172−81 doi: 10.1007/s11947-015-1610-0 |
[85] |
Stoll L, Silva AMd, Iahnke AOeS, Costa TMH, Flôres SH, et al. 2017. Active biodegradable film with encapsulated anthocyanins: Effect on the quality attributes of extra-virgin olive oil during storage. Journal of Food Processing and Preservation 41(6):e13218 doi: 10.1111/jfpp.13218 |
[86] |
Sun G, Chi W, Zhang C, Xu S, Li J, et al. 2019. Developing a green film with pH-sensitivity and antioxidant activity based on κ-carrageenan and hydroxypropyl methylcellulose incorporating Prunus maackii juice. Food Hydrocolloids 94:345−53 doi: 10.1016/j.foodhyd.2019.03.039 |
[87] |
Vargas CG, Haas Costa TM, Rios AdO, Flôres SH. 2017. Comparative study on the properties of films based on red rice (Oryza glaberrima) flour and starch. Food Hydrocolloids 65:96−106 doi: 10.1016/j.foodhyd.2016.11.006 |