[1]

Luo D, Pang X, Xu X, Bi S, Zhang W, et al. 2018. Identification of Cooked Off-Flavor Components and Analysis of Their Formation Mechanisms in Melon Juice during Thermal Processing. Journal of Agricultural & Food Chemistry 66:5612−20

doi: 10.1021/acs.jafc.8b01019
[2]

Menon SV, Rao TVR. 2014. Health-Promoting Components and Related Enzyme Activities of Muskmelon Fruit During its Development and Ripening. Journal of Food Biochemistry 38:415−23

doi: 10.1111/jfbc.12068
[3]

Li G, Jiao Z, Chen Z, Zhao S, Wang C, et al. 2010. Analysis of aromatic compounds in three muskmelon cultivars (Cucumismelon) by solid phase microextraction with GC-MS. Journal of Fruit Science 27:591−97

[4]

Kourkoutas D, Elmore JS, Mottram DS. 2006. Comparison of the volatile compositions and flavour properties of cantaloupe, Galia and honeydew muskmelons. Food Chemistry 97:95−102

doi: 10.1016/j.foodchem.2005.03.026
[5]

Jordán MJ, Shaw PE, Goodner KL. 2001. Volatile components in aqueous essence and fresh fruit of Cucumis melo cv. Athena (muskmelon) by GC-MS and GC-O. Journal of Agricultural & Food Chemistry 49:5929−33

doi: /10.1021/jf010954o
[6]

Fredes A, Sales C, Barreda M, Valcárcel M, Roselló S, et al. 2016. Quantification of prominent volatile compounds responsible for muskmelon and watermelon aroma by purge and trap extraction followed by gas chromatography–mass spectrometry determination. Food Chemistry 190:689−700

doi: 10.1016/j.foodchem.2015.06.011
[7]

Wang C. 2007. Comparative analysis of volatile flavor substances in thin-skinned and thick-skinned melons. Thesis. Gansu Agricultural University, China. pp. 48−53.

[8]

Xiao S, Wang C, Qiao W, Zhao S, Liu C, et al. 2010. Analysis of volatile componentents in muskmelon cultivar Luhoutian 2 (Cucumismelon) by solid phase microextraction with GC-MS. Journal of Fruit Science 27:140−45

[9]

Jia K, Hu X, Liao X, Zhang M, Chen F, et al. 2010. Headspace solid-phase microextraction followed by GC-MS analysis of volatile flavor composition of Hami melon. Food Science 31(10):239−43

[10]

Shi J, Wu H, Xiong M, Chen Y, Chen J, et al. 2020. Comparative analysis of volatile compounds in thirty nine melon cultivars by headspace solid-phase microextraction and gas chromatography-mass spectrometry. Food Chemistry 316:126342

doi: 10.1016/j.foodchem.2020.126342
[11]

Shan C. 2015. Transcriptomics and proteomics of Hami melon responding to Penicillium infection and change analysis of resistance-related enzymes. Thesis. Jiangnan University, China. pp. 10−11.

[12]

Peng L, Gao W, Song M, Li M, He D, et al. 2022. Integrated metabolome and transcriptome analysis of fruit flavor and carotenoids biosynthesis differences between mature-green and tree-ripe of cv. "Golden Phoenix" mangoes (Mangifera indica L.). Frontiers in Plant Science 13:816492

doi: 10.3389/fpls.2022.816492
[13]

Ma H, Liu L, Su Y, Zhang D, Yuan Y, et al. 2022. Screen of freezing stress-responsive genes that regulate photosynthetic characteristics of in vitroseedlings of Malus sieversii based on transcriptome sequencing. Journal of Fruit Science 39(9):1529−39

doi: 10.13925/j.cnki.gsxb.20220086
[14]

Li J. 2020. Transcriptomic analysis and regulation mechanism of anthocyanin biosynthesis in Ficus carica peels. Thesis. Nanjing Agricultural University, China. pp. 34−38.

[15]

Bao X, Hu N, Zong Y, Wang H. 2021. Transcriptomics mining the key bHLH regulatory genes for anthocyanin biosynthesis of Lycium ruthenicum Murray. Molecular Plant Breeding 21(6):1864−73

doi: 10.13271/j.mpb.021.001864
[16]

Wei W, Li T, Wang Y, Shan S. 2022. Effect of soil water content on fruit quality of 'Beihong' grapevine and transcriptome analysis. Sino-Overseas Grapevine & Wine 2022(2):38−43

doi: 10.13414/j.cnki.zwpp.2022.02.006
[17]

Zhang Q. 2017. Gene mining and analyzation of transcriptionally regulated network related to apricot flavor and color quality based on transcriptomics. Thesis. Southwest University, China. pp. 17−19.

[18]

Sun Y, Ci Z, Liu Z, Lu L, Liu G, et al. 2021. Differences in fruit quality and aroma components of different soft date kiwifruit varieties. China Fruits 2021(5):52−55+60

doi: 10.16626/j.cnki.issn1000-8047.2021.05.010
[19]

Cao J, Jiang W, Zhao Y. 2007. Experiment guidance of postharvest physiology and biochemistry of fruits and vegetables. Beijing, China: Light Industry Press. pp. 105−22.

[20]

Dagli MM, Yeldan PA, Sevindik O, Guclu G, Kelebek H, et al. 2022. Investigation of aroma compounds of Queen Anne's pocket melon (Cucumis melo L. ssp. dudaim) juice. Journal of Raw Materials to Processed Foods 3(2):74−82

[21]

Ma Y, Zhou S, Chen J, Hu X. 2004. Analysis of aromatic compounds in ripe and unripe golden empress melon (Cucumis Melon L.) by solid phase microextraction. Food Science 2004(7):136−39

doi: 10.3321/j.issn:1002-6630.2004.07.030
[22]

Fallik E, Alkali-Tuvia S, Horev B, Copel A, Rodov V, et al. 2001. Characterisation of 'Galia' melon aroma by GC and mass spectrometric sensor measurements after prolonged storage. Postharvest Biology & Technology 22:85−91

doi: 10.1016/s0925-5214(00)00185-x
[23]

Tang G. 2008. Study on the content and metabolic pathways of volatile substances in thick-skinned melon fruits. Thesis. Shandong Agricultural University, China. pp. 23−27.

[24]

Li J, Wu H, Luo J, Chen J, Zhao G, et al. 2021. Analysis and comparison of aroma substances of three different types of lucerne fruits. Modern Food Science and Technology 37:228−37

[25]

Luo D, Pang X, Gao L, Hu X, Liao X, et al. 2019. Construction of flavor fingerprint profiles of two representative thick-skinned melons and analysis of differences. Chinese Journal of Food Science 19:256−65

[26]

Qian Z, Tang X, Wu Z, Yang M, Liu M. 2009. Comparative analysis of aromatic substances and nutritional quality of different cultivar types of melon. Chinese Agronomy Bulletin 25(12):165−71

[27]

Matich A, Rowan D. 2007. Pathway analysis of branched-chain ester biosynthesis in apple using deuterium labeling and enantioselective gas chromatography-mass spectrometry. Journal of Agricultural & Food Chemistry 55:2727

doi: 10.1021/jf063018n
[28]

Qi H, Liu Y, Liu Y. 2011. Qualitative and quantitative analysis of aroma compounds in ripe different oriental melons. China Cucurbits and Vegetables 24:1−6

doi: 10.3969/j.issn.1673-2871.2011.06.001
[29]

Jin Y, Zhang C, Liu W, Tang Y, Qi H, et al. 2016. The alcohol dehydrogenase gene family in melon (Cucumis melo L.): Bioinformatic analysis and expression patterns. Frontiers in Plant Science 7:670

doi: 10.3389/fpls.2016.00670
[30]

Fellman JK. 1997. Factors that influence biosynthesis of volatile flavor compounds in apple fruits. HortScience 32(3):554C−554

doi: 10.21273/hortsci.32.3.554c
[31]

Defilippi BG, Kader AA, Dandekar AM. 2005. Apple aroma: alcohol acyltransferase, a rate limiting step for ester biosynthesis, is regulated by ethylene. Plant Science 168:1199−210

doi: 10.1016/j.plantsci.2004.12.018
[32]

Shalit M, Katzir N, Tadmor Y, Larkov O, Burger Y, et al. 2001. Acetyl-CoA: Alcohol acetyltransferase activity and aroma formation in ripening melon fruits. Journal of Agricultural & Food Chemistry 49:794

doi: 10.1021/jf001075p
[33]

Nie L, Sun J, Huang R. 2004. The biosynthesis and affecting factors of aroma in some fruits. Chinese Bulletin of Botany 5:631−37

doi: 10.3969/j.issn.1674-3466.2004.05.015
[34]

Paillard N. 1979. Biosynthese des produits volatils de la pomme: Formation des alcools et des esters a partir des acides gras. Phytochemistry 18:1165−71

doi: 10.1016/0031-9422(79)80127-2
[35]

Nmm P. 1990. The flavour of apples, pears and quinces. Developments in food Science 25:28−33

[36]

El-Sharkawy I, Manríquez D, Flores FB, Regad F, Bouzayen M, et al. 2005. Functional Characterization of a melon alcohol acyl-transferase gene family involved in the biosynthesis of ester volatiles. Identification of the crucial role of a Threonine Residue for enzyme activity. Plant Molecular Biology 59:345−62

doi: 10.1007/s11103-005-8884-y