[1]

Rhee SY, Birnbaum KD, Ehrhardt DW. 2019. Towards building a plant cell atlas. Trends in Plant Science 24:303−10

doi: 10.1016/j.tplants.2019.01.006
[2]

Harkess A. 2019. Small RNAs in the Maillot jaune: transcriptional analysis of the plant cell cycle. The Plant Cell 31:1676−77

doi: 10.1105/tpc.19.00498
[3]

Gentric N, Genschik P, Noir S. 2021. Connections between the cell cycle and the DNA damage response in plants. International Journal of Molecular Sciences 22:9558

doi: 10.3390/ijms22179558
[4]

Garza-Aguilar SM, Axosco-Marín J, Lara-Núñez A, Guerrero-Molina ED, Lemus-Enciso AT, et al. 2019. Proliferating cell nuclear antigen associates to protein complexes containing cyclins/cyclin dependent kinases susceptible of inhibition by KRPs during maize germination. Plant Science 280:297−304

doi: 10.1016/j.plantsci.2018.12.020
[5]

Torres Acosta JA, Fowke LC, Wang H. 2011. Analyses of phylogeny, evolution, conserved sequences and genome-wide expression of the ICK/KRP family of plant CDK inhibitors. Annals of Botany 107:1141−57

doi: 10.1093/aob/mcr034
[6]

Inzé D, De Veylder L. 2006. Cell cycle regulation in plant development. Annual Review of Genetics 40:77−105

doi: 10.1146/annurev.genet.40.110405.090431
[7]

Sizani BL, Kalve S, Markakis MN, Domagalska MA, Stelmaszewska J, et al. 2019. Multiple mechanisms explain how reduced KRP expression increases leaf size of Arabidopsis thaliana. New Phytologist 221:1345−58

doi: 10.1111/nph.15458
[8]

Coelho RR, Vieira P, de Souza Júnior DA, Martin-Jimenez C, De Veylder L, et al. 2017. Exploiting cell cycle inhibitor genes of the KRP family to control root-knot nematode induced feeding sites in plants. Plant, Cell & Environment 40:1174−88

doi: 10.1111/pce.12912
[9]

Weinl C, Marquardt S, Kuijt SJH, Nowack MK, Jakoby MJ, et al. 2005. Novel functions of plant cyclin-dependent kinase inhibitors, ICK1/KRP1, can act non-cell-autonomously and inhibit entry into mitosis. The Plant Cell 17:1704−22

doi: 10.1105/tpc.104.030486
[10]

Jun SE, Okushima Y, Nam J, Umeda M, Kim GT. 2013. Kip-related protein 3 is required for control of endoreduplication in the shoot apical meristem and leaves of Arabidopsis. Molecules and Cells 35:47−53

doi: 10.1007/s10059-013-2270-4
[11]

Nafati M, Cheniclet C, Hernould M, Do PT, Fernie AR, et al. 2011. The specific overexpression of a cyclin-dependent kinase inhibitor in tomato fruit mesocarp cells uncouples endoreduplication and cell growth. The Plant Journal 65:543−56

doi: 10.1111/j.1365-313X.2010.04446.x
[12]

Shimotohno A, Aki SS, Takahashi N, Umeda M. 2021. Regulation of the plant cell cycle in response to hormones and the environment. Annual Review of Plant Biology 72:273−96

doi: 10.1146/annurev-arplant-080720-103739
[13]

Pan T, Qin Q, Nong C, Gao S, Wang L, et al. 2021. Author Correction: a novel WEE1 pathway for replication stress responses. Nature Plants 7:376

doi: 10.1038/s41477-021-00883-4
[14]

Wang L, Zhan L, Zhao Y, Huang Y, Wu C, et al. 2021. The ATR-WEE1 kinase module inhibits the MAC complex to regulate replication stress response. Nucleic Acids Research 49:1411−25

doi: 10.1093/nar/gkaa1082
[15]

Wang H, Qi Q, Schorr P, Cutler AJ, Crosby WL, et al. 1998. ICK1, a cyclin-dependent protein kinase inhibitor from Arabidopsis thaliana interacts with both Cdc2a and CycD3, and its expression is induced by abscisic acid. The Plant Journal 15:501−10

doi: 10.1046/j.1365-313X.1998.00231.x
[16]

Sun X, Wang P, Jia X, Huo L, Che R, et al. 2018. Improvement of drought tolerance by overexpressing MdATG18a is mediated by modified antioxidant system and activated autophagy in transgenic apple. Plant Biotechnology Journal 16:545−57

doi: 10.1111/pbi.12794
[17]

Ajadi AA, Tong X, Wang H, Zhao J, Tang L, et al. 2020. Cyclin-dependent kinase inhibitors KRP1 and KRP2 are involved in grain filling and seed germination in rice (Oryza sativa L.). International Journal of Molecular Sciences 21:245

doi: 10.3390/ijms21010245
[18]

Wang Y, Li J, Paterson AH. 2013. MCScanX-transposed: detecting transposed gene duplications based on multiple colinearity scans. Bioinformatics 29:1458−60

doi: 10.1093/bioinformatics/btt150
[19]

Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, et al. 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant 13:1194−202

doi: 10.1016/j.molp.2020.06.009
[20]

Zouine M, Maza E, Djari A, Lauvernier M, Frasse P, et al. 2017. TomExpress, a unified tomato RNA-Seq platform for visualization of expression data, clustering and correlation networks. The Plant Journal 92:727−35

doi: 10.1111/tpj.13711
[21]

Liu G, Yu H, Yuan L, Li C, Ye J, et al. 2021. SlRCM1, which encodes tomato Lutescent1, is required for chlorophyll synthesis and chloroplast development in fruits. Horticulture Research 8:128

doi: 10.1038/s41438-021-00563-6
[22]

Liang Y, Ma F, Li B, Guo C, Hu T, et al. 2022. A bHLH transcription factor, SlbHLH96, promotes drought tolerance in tomato. Horticulture Research 9:uhac198

doi: 10.1093/hr/uhac198
[23]

Jia Y, Niu Y, Zhao H, Wang Z, Gao C, et al. 2022. Hierarchical transcription factor and regulatory network for drought response in Betula platyphylla. Horticulture Research 9:uhac040

doi: 10.1093/hr/uhac040
[24]

Cai X, Chang L, Zhang T, Chen H, Zhang L, et al. 2021. Impacts of allopolyploidization and structural variation on intraspecific diversification in Brassica rapa. Genome Biology 22:166

doi: 10.1186/s13059-021-02383-2
[25]

Belda-Palazon B, Julian J, Coego A, Wu Q, Zhang X, et al. 2019. ABA inhibits myristoylation and induces shuttling of the RGLG1 E3 ligase to promote nuclear degradation of PP2CA. The Plant Journal 98:813−25

doi: 10.1111/tpj.14274
[26]

Zhao W, Wu W, Liu Y, Fan L, Meng H, et al. 2023. The TT2-type MYB transcription factor JrMYB12 positively regulates proanthocyanidin biosynthesis in red walnut. Scientia Horticulturae 307:111515

doi: 10.1016/j.scienta.2022.111515
[27]

Anfang M, Shani E. 2021. Transport mechanisms of plant hormones. Current Opinion in Plant Biology 63:102055

doi: 10.1016/j.pbi.2021.102055
[28]

Cao L, Wang S, Venglat P, Zhao L, Cheng Y, et al. 2018. Arabidopsis ICK/KRP cyclin-dependent kinase inhibitors function to ensure the formation of one megaspore mother cell and one functional megaspore per ovule. PLoS Genetics 14:e1007230

doi: 10.1371/journal.pgen.1007230
[29]

Miller HE, Bishop AJR. 2021. Correlation AnalyzeR: functional predictions from gene co-expression correlations. BMC Bioinformatics 22:206

doi: 10.1186/s12859-021-04130-7
[30]

Li Y, Chen Y, Zhou L, You S, Deng H, et al. 2020. MicroTom metabolic network: rewiring tomato metabolic regulatory network throughout the growth cycle. Molecular Plant 13:1203−18

doi: 10.1016/j.molp.2020.06.005
[31]

Loyer P, Trembley JH, Katona R, Kidd VJ, Lahti JM. 2005. Role of CDK/cyclin complexes in transcription and RNA splicing. Cellular Signalling 17:1033−51

doi: 10.1016/j.cellsig.2005.02.005
[32]

Qiu L, Wang J, Ying S, Feng M. 2015. Wee1 and Cdc25 control morphogenesis, virulence and multistress tolerance of Beauveria bassiana by balancing cell cycle-required cyclin-dependent kinase 1 activity. Environmental Microbiology 17:1119−33

doi: 10.1111/1462-2920.12530
[33]

Bisbis B, Delmas F, Joubès J, Sicard A, Hernould M, et al. 2006. Cyclin-dependent kinase (CDK) inhibitors regulate the CDK-cyclin complex activities in endoreduplicating cells of developing tomato fruit. Journal of Biological Chemistry 281:7374−83

doi: 10.1074/jbc.M506587200
[34]

Xiao Q, Zhang C, Li H, Wei B, Wang Y, et al. 2017. Identification and functional analysis of the ICK gene family in maize. Scientific Reports 7:43818

doi: 10.1038/srep43818
[35]

Cheng Y, Liu H, Cao L, Wang S, Li Y, et al. 2015. Down-regulation of multiple CDK inhibitor ICK/KRP genes promotes cell proliferation, callus induction and plant regeneration in Arabidopsis. Frontiers in Plant Science 6:825

doi: 10.3389/fpls.2015.00825
[36]

Nafati M, Frangne N, Hernould M, Chevalier C, Gévaudant F. 2010. Functional characterization of the tomato cyclin-dependent kinase inhibitor SlKRP1 domains involved in protein-protein interactions. New Phytologist 188:136−49

doi: 10.1111/j.1469-8137.2010.03364.x
[37]

Moore RC, Purugganan MD. 2003. The early stages of duplicate gene evolution. Proceedings of the National Academy of Sciences of the United States of America 100:15682−87

doi: 10.1073/pnas.2535513100
[38]

Wang C, Hao X, Wang Y, Maoz I, Zhou W, et al. 2022. Identification of WRKY transcription factors involved in regulating the biosynthesis of the anti-cancer drug camptothecin in Ophiorrhiza pumila. Horticulture Research 9:uhac099

doi: 10.1093/hr/uhac099
[39]

Wu S, Zhang B, Keyhaninejad N, Rodríguez GR, Kim HJ, et al. 2018. A common genetic mechanism underlies morphological diversity in fruits and other plant organs. Nature Communications 9:4734

doi: 10.1038/s41467-018-07216-8
[40]

Verkest A, de O. Manes CL, Vercruysse S, Maes S, Van Der Schueren E, et al. 2005. The cyclin-dependent kinase inhibitor KRP2 controls the onset of the endoreduplication cycle during Arabidopsis leaf development through inhibition of mitotic CDKA;1 kinase complexes. The Plant Cell 17:1723−36

doi: 10.1105/tpc.105.032383
[41]

Goldy C, Pedroza-Garcia JA, Breakfield N, Cools T, Vena R, et al. 2021. The Arabidopsis GRAS-type SCL28 transcription factor controls the mitotic cell cycle and division plane orientation. Proceedings of the National Academy of Sciences of the United States of America 118:e2005256118

doi: 10.1073/pnas.2005256118
[42]

Takahashi N, Ogita N, Takahashi T, Taniguchi S, Tanaka M, et al. 2019. A regulatory module controlling stress-induced cell cycle arrest in Arabidopsis. eLife 8:e43944

doi: 10.7554/eLife.43944
[43]

Zhang H, Zhao Y, Zhu J. 2020. Thriving under stress: how plants balance growth and the stress response. Developmental Cell 55:529−43

doi: 10.1016/j.devcel.2020.10.012