[1]

Janská A, Maršík P, Zelenková S, Ovesná J. 2010. Cold stress and acclimation – what is important for metabolic adjustment? Plant Biology 12:395−405

doi: 10.1111/j.1438-8677.2009.00299.x
[2]

Thomashow MF. 1999. Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annual Review of Plant Physiology and Plant Molecular Biology 50:571−99

doi: 10.1146/annurev.arplant.50.1.571
[3]

Thomashow MF. 2001. So what's new in the field of plant cold acclimation? Lots! Plant Physiology 125:89−93

doi: 10.1104/pp.125.1.89
[4]

Stockinger EJ, Gilmour SJ, Thomashow MF. 1997. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proceedings of the National Academy of Sciences of the United States of America 94:1035−40

doi: 10.1073/pnas.94.3.1035
[5]

Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, et al. 1998. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, in Arabidopsis. The Plant Cell 10:1391−406

doi: 10.1105/tpc.10.8.1391
[6]

Shi Y, Ding Y, Yang S. 2018. Molecular regulation of CBF signaling in cold acclimation. Trends in Plant Science 23:623−37

doi: 10.1016/j.tplants.2018.04.002
[7]

Park S, Lee CM, Doherty CJ, Gilmour SJ, Kim Y, et al. 2015. Regulation of the Arabidopsis CBF regulon by a complex low-temperature regulatory network. The Plant Journal 82:193−207

doi: 10.1111/tpj.12796
[8]

Qin F, Sakuma Y, Li J, Liu Q, Li Y, et al. 2004. Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L. Plant and Cell Physiology 45:1042−52

doi: 10.1093/pcp/pch118
[9]

Zhang X, Fowler SG, Cheng H, Lou Y, Rhee SY, et al. 2004. Freezing-sensitive tomato has a functional CBF cold response pathway, but a CBF regulon that differs from that of freezing-tolerant Arabidopsis. The Plant Journal 39:905−19

doi: 10.1111/j.1365-313X.2004.02176.x
[10]

Savitch LV, Allard G, Seki M, Robert LS, Tinker NA, et al. 2005. The effect of overexpression of two Brassica CBF/DREB1-like transcription factors on photosynthetic capacity and freezing tolerance in Brassica napus. Plant and Cell Physiology 46:1525−39

doi: 10.1093/pcp/pci165
[11]

Ito Y, Katsura K, Maruyama K, Taji T, Kobayashi M, et al. 2006. Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant and Cell Physiology 47:141−53

doi: 10.1093/pcp/pci230
[12]

Soltész A, Smedley M, Vashegyi I, Galiba G, Harwood W, et al. 2013. Transgenic barley lines prove the involvement of TaCBF14 and TaCBF15 in the cold acclimation process and in frost tolerance. Journal of Experimental Botany 64:1849−62

doi: 10.1093/jxb/ert050
[13]

Jia Y, Ding Y, Shi Y, Zhang X, Gong Z, et al. 2016. The cbfs triple mutants reveal the essential functions of CBFs in cold acclimation and allow the definition of CBF regulons in Arabidopsis. New Phytologist 212:345−53

doi: 10.1111/nph.14088
[14]

Chinnusamy V, Ohta M, Kanrar S, Lee BH, Hong X, et al. 2003. ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes & Development 17:1043−54

doi: 10.1101/gad.1077503
[15]

Ding Y, Li H, Zhang X, Xie Q, Gong Z, et al. 2015. OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in Arabidopsis. Developmental Cell 32:278−89

doi: 10.1016/j.devcel.2014.12.023
[16]

Tang K, Zhao L, Ren Y, Yang S, Zhu J, et al. 2020. The transcription factor ICE1 functions in cold stress response by binding to the promoters of CBF and COR genes. Journal of Integrative Plant Biology 62:258−63

doi: 10.1111/jipb.12918
[17]

Doherty CJ, Van Buskirk HA, Myers SJ, Thomashow MF. 2009. Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance. The Plant Cell 21:972−84

doi: 10.1105/tpc.108.063958
[18]

Kim Y, Park S, Gilmour SJ, Thomashow MF. 2013. Roles of CAMTA transcription factors and salicylic acid in configuring the low-temperature transcriptome and freezing tolerance of Arabidopsis. The Plant Journal 75:364−76

doi: 10.1111/tpj.12205
[19]

Agarwal M, Hao Y, Kapoor A, Dong CH, Fujii H, et al. 2006. A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. Journal of Biological Chemistry 281:37636−45

doi: 10.1074/jbc.M605895200
[20]

Shi Y, Tian S, Hou L, Huang X, Zhang X, et al. 2012. Ethylene signaling negatively regulates freezing tolerance by repressing expression of CBF and type-A ARR genes in Arabidopsis. The Plant Cell 24:2578−95

doi: 10.1105/tpc.112.098640
[21]

Eremina M, Unterholzner SJ, Rathnayake AI, Castellanos M, Khan M, et al. 2016. Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants. Proceedings of the National Academy of Sciences of the United States of America 113:E5982−E5991

doi: 10.1073/pnas.1611477113
[22]

Li H, Ye K, Shi Y, Cheng J, Zhang X, et al. 2017. BZR1 positively regulates freezing tolerance via CBF-dependent and CBF-independent pathways in Arabidopsis. Molecular Plant 10:545−59

doi: 10.1016/j.molp.2017.01.004
[23]

Lee CM, Thomashow MF. 2012. Photoperiodic regulation of the C-repeat binding factor (CBF) cold acclimation pathway and freezing tolerance in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America 109:15054−59

doi: 10.1073/pnas.1211295109
[24]

Jiang B, Shi Y, Zhang X, Xin X, Qi L, et al. 2017. PIF3 is a negative regulator of the CBF pathway and freezing tolerance in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 114:E6695−E6702

doi: 10.1073/pnas.1706226114
[25]

Dong MA, Farré EM, Thomashow MF. 2011. Circadian clock-associated 1 and late elongated hypocotyl regulate expression of the C-repeat binding factor (CBF) pathway in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 108:7241−46

doi: 10.1073/pnas.1103741108
[26]

Kidokoro S, Hayashi K, Haraguchi H, Ishikawa T, Soma F, et al. 2021. Posttranslational regulation of multiple clock-related transcription factors triggers cold-inducible gene expression in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 118:e2021048118

doi: 10.1073/pnas.2021048118
[27]

Catalá R, Medina J, Salinas J. 2011. Integration of low temperature and light signaling during cold acclimation response in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 108:16475−80

doi: 10.1073/pnas.1107161108
[28]

Olate E, Jiménez-Gómez JM, Holuigue L, Salinas J. 2018. NPR1 mediates a novel regulatory pathway in cold acclimation by interacting with HSFA1 factors. Nature Plants 4:811−23

doi: 10.1038/s41477-018-0254-2
[29]

Chinnusamy V, Zhu J, Zhu J. 2007. Cold stress regulation of gene expression in plants. Trends in Plant Science 12:444−51

doi: 10.1016/j.tplants.2007.07.002
[30]

Dhingra M. 2015. Physiological responses and tolerance mechanisms of low temperature stress in plants. International Journal of Advanced Research 3:637−46

[31]

Wu F, Wang H, Xu G, Zhang Z. 2015. Research progress on the physiological and molecular mechanisms of woody plants under low temperature stress. Scientia Silvae Sinicae 51:116−28

[32]

Cheng H, Cai H, Fu H, An Z, Fang J, et al. 2015. Functional characterization of Hevea brasiliensis CRT/DRE binding factor 1 gene revealed regulation potential in the CBF pathway of tropical perennial tree. PLoS ONE 10:e0137634

doi: 10.1371/journal.pone.0137634
[33]

Yuan H, Sheng Y, Chen W, Lu Y, Tang X, et al. 2017. Overexpression of Hevea brasiliensis HbICE1 enhances cold tolerance in Arabidopsis. Frontiers in Plant Science 8:1462

doi: 10.3389/fpls.2017.01462
[34]

Cheng H, Chen X, Huang H. 2016. The identification and expression analysis of cold responsive HbCOR47 gene from Hevea brasiliensis. Chinese Journal of Tropical Crops 37:1924−30

doi: 10.3969/j.issn.1000-2561.2016.10.013
[35]

Cheng H, Chen X, Zhu J, Huang H. 2016. Overexpression of a Hevea brasiliensis ErbB-3 Binding protein 1 gene increases drought tolerance and organ size in Arabidopsis. Frontiers in Plant Science 7:1703

doi: 10.3389/fpls.2016.01703
[36]

Yang Q, Gao J, He W, Dou T, Ding L, et al. 2015. Comparative transcriptomics analysis reveals difference of key gene expression between banana and plantain in response to cold stress. BMC Genomics 16:446

doi: 10.1186/s12864-015-1551-z
[37]

Wu H, Lv H, Li L, Liu J, Mu S, et al. 2015. Genome-wide analysis of the AP2/ERF transcription factors family and the expression patterns of DREB genes in Moso Bamboo (Phyllostachys edulis). PLoS ONE 10:e0126657

doi: 10.1371/journal.pone.0126657
[38]

Hou D, Cheng Z, Xie L, Li X, Li J, et al. 2018. The R2R3MYB gene family in Phyllostachys edulis: genome-wide analysis and identification of stress or development-related R2R3MYBs. Frontiers in Plant Science 9:738

doi: 10.3389/fpls.2018.00738
[39]

Liu Y, Wu C, Hu X, Gao H, Wang Y, et al. 2020. Transcriptome profiling reveals the crucial biological pathways involved in cold response in Moso bamboo (Phyllostachys edulis). Tree Physiology 40:538−56

doi: 10.1093/treephys/tpz133
[40]

Wheeler GS, Taylor GS, Gaskin J, Purcell MF. 2011. Ecology and management of Sheoak (Casuarina spp.), an invader of coastal Florida, USA. Journal of Coastal Research 27:485−92

[41]

Duke J. 1983. Casuarina equisetifolia JR and G. Forst. Center for New Crops and Plant Products, Purdue University

[42]

Kim D, Langmead B, Salzberg SL. 2015. HISAT: a fast spliced aligner with low memory requirements. Nature Methods 12:357−60

doi: 10.1038/nmeth.3317
[43]

Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, et al. 2015. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature Biotechnology 33:290−95

doi: 10.1038/nbt.3122
[44]

Rhee SY, Beavis W, Berardini TZ, Chen G, Dixon D, et al. 2003. The Arabidopsis Information Resource (TAIR): a model organism database providing a centralized, curated gateway to Arabidopsis biology, research materials and community. Nucleic Acids Research 31:224−28

doi: 10.1093/nar/gkg076
[45]

Salojärvi J, Smolander OP, Nieminen K, Rajaraman S, Safronov O, et al. 2017. Genome sequencing and population genomic analyses provide insights into the adaptive landscape of silver birch. Nature Genetics 49:904−12

doi: 10.1038/ng.3862
[46]

Guo L, Wang S, Nie Y, Shen Y, Ye X, et al. 2022. Convergent evolution of AP2/ERF III and IX subfamilies through recurrent polyploidization and tandem duplication during eudicot adaptation to paleoenvironmental changes. Plant Communication 3:100420

doi: 10.1016/j.xplc.2022.100420
[47]

Song Y, Zhang X, Li M, Yang H, Fu D, et al. 2021. The direct targets of CBFs: in cold stress response and beyond. Journal of Integrative Plant Biology 63:1874−87

doi: 10.1111/jipb.13161
[48]

Zhao C, Zhang Z, Xie S, Si T, Li Y, et al. 2016. Mutational evidence for the critical role of CBF transcription factors in cold acclimation in Arabidopsis. Plant Physiology 171:2744−59

doi: 10.1104/pp.16.00533
[49]

Grant CE, Bailey TL, Noble WS. 2011. FIMO: scanning for occurrences of a given motif. Bioinformatics 27:1017−18

doi: 10.1093/bioinformatics/btr064
[50]

Jiang Y, Yang B, Harris NS, Deyholos MK. 2007. Comparative proteomic analysis of NaCl stress-responsive proteins in Arabidopsis roots. Journal of Experimental Botany 58:3591−607

doi: 10.1093/jxb/erm207
[51]

Thomashow MF. 1990. Molecular genetics of cold acclimation in higher plants. Advances in Genetics 28:99−131

doi: 10.1016/S0065-2660(08)60525-8
[52]

Guy CL. 1990. Cold acclimation and freezing stress tolerance: role of protein metabolism. Annual Review of Plant Physiology and Plant Molecular Biology 41:187−223

doi: 10.1146/annurev.pp.41.060190.001155
[53]

Thomashow M. 1994. Arabidopsis thaliana as a model for studying mechanisms of plant cold tolerance. Arabidopsis 27:807−34

[54]

Thomashow MF. 1998. Role of cold-responsive genes in plant freezing tolerance. Plant Physiology 118:1−8

doi: 10.1104/pp.118.1.1
[55]

Renaut J, Lutts S, Hoffmann L, Hausman JF. 2004. Responses of poplar to chilling temperatures: proteomic and physiological aspects. Plant Biology 6:81−90

doi: 10.1055/s-2004-815733
[56]

Jia H, Zhang S, Ruan M, Wang Y, Wang C. 2012. Analysis and application of RD29 genes in abiotic stress response. Acta Physiologiae Plantarum 34:1239−50

doi: 10.1007/s11738-012-0969-z
[57]

Zhou A, Liu E, Li H, Li Y, Feng S, et al. 2018. PsCor413pm2, a plasma membrane-localized, cold-regulated protein from Phlox subulata, confers low temperature tolerance in Arabidopsis. International Journal of Molecular Sciences 19:2579

doi: 10.3390/ijms19092579
[58]

Hu X, Liu J, Liu E, Qiao K, Gong S, et al. 2021. Arabidopsis cold-regulated plasma membrane protein Cor413pm1 is a regulator of ABA response. Biochemical and Biophysical Research Communications 561:88−92

doi: 10.1016/j.bbrc.2021.05.032
[59]

Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF. 1998. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280:104−06

doi: 10.1126/science.280.5360.104
[60]

Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, et al. 1998. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. The Plant Journal 16:433−42

doi: 10.1046/j.1365-313x.1998.00310.x
[61]

Medina J, Bargues M, Terol J, Pérez-Alonso M, Salinas J. 1999. The Arabidopsis CBF gene family is composed of three genes encoding AP2 domain-containing proteins whose expression is regulated by low temperature but not by abscisic acid or dehydration. Plant Physiology 119:463−70

doi: 10.1104/pp.119.2.463
[62]

Ding Y, Shi Y, Yang S. 2020. Molecular regulation of plant responses to environmental temperatures. Molecular Plant 13:544−64

doi: 10.1016/j.molp.2020.02.004
[63]

Hu G, Feng J, Xiang X, Wang J, Salojärvi J, et al. 2022. Two divergent haplotypes from a highly heterozygous lychee genome suggest independent domestication events for early and late-maturing cultivars. Nature Genetics 54:73−83

doi: 10.1038/s41588-021-00971-3
[64]

Ming R, VanBuren R, Wai CM, Tang H, Schatz MC, et al. 2015. The pineapple genome and the evolution of CAM photosynthesis. Nature Genetics 47:1435−42

doi: 10.1038/ng.3435
[65]

Wu GA, Terol J, Ibanez V, López-García A, Pérez-Román E, et al. 2018. Genomics of the origin and evolution of Citrus. Nature 554:311−16

doi: 10.1038/nature25447
[66]

Perrier X, De Langhe E, Donohue M, Lentfer C, Vrydaghs L, et al. 2011. Multidisciplinary perspectives on banana (Musa spp.) domestication. Proceedings of the National Academy of Sciences of the United States of America 108:11311−18

doi: 10.1073/pnas.1102001108
[67]

Chen Y, Wang G-M, Zhou J. 2005. Advances in the Study of Stress Resistance of Casuarina equisetifolia. Chinese Bulletin of Botany 22:746−52

doi: 10.3969/j.issn.1674-3466.2005.06.015
[68]

Ding Y, Lv J, Shi Y, Gao J, Hua J, et al. 2019. EGR 2 phosphatase regulates OST1 kinase activity and freezing tolerance in Arabidopsis. The EMBO Journal 38:e99819

doi: 10.15252/embj.201899819
[69]

Mantyla E, Lang V, Palva ET. 1995. Role of abscisic acid in drought-induced freezing tolerance, cold acclimation, and accumulation of LT178 and RAB18 proteins in Arabidopsis thaliana. Plant Physiology 107:141−48

doi: 10.1104/pp.107.1.141
[70]

Artus NN, Uemura M, Steponkus PL, Gilmour SJ, Lin C, et al. 1996. Constitutive expression of the cold-regulated Arabidopsis thaliana COR15a gene affects both chloroplast and protoplast freezing tolerance. Proceedings of the National Academy of Sciences of the United States of America 93:13404−09

doi: 10.1073/pnas.93.23.13404
[71]

Steponkus PL, Uemura M, Joseph RA, Gilmour SJ, Thomashow MF. 1998. Mode of action of the COR15a gene on the freezing tolerance of Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America 95:14570−75

doi: 10.1073/pnas.95.24.14570
[72]

Zarka DG, Vogel JT, Cook D, Thomashow MF. 2003. Cold induction of Arabidopsis CBF genes involves multiple ICE (inducer of CBF expression) promoter elements and a cold-regulatory circuit that is desensitized by low temperature. Plant Physiology 133:910−18

doi: 10.1104/pp.103.027169
[73]

Cheng H, Chen X, Fang J, An Z, Hu Y, et al. 2018. Comparative transcriptome analysis reveals an early gene expression profile that contributes to cold resistance in Hevea brasiliensis (the Para rubber tree). Tree Physiology 38:1409−23

doi: 10.1093/treephys/tpy014