[1]

Sharma R, Sheth PN. 2018. Multi reaction apparent kinetic scheme for the pyrolysis of large size biomass particles using macro-TGA. Energy 151:1007−17

doi: 10.1016/j.energy.2018.03.075
[2]

Wu C, Huang G, Xin B, Chen J. 2018. Scenario analysis of carbon emissions' anti-driving effect on Qingdao's energy structure adjustment with an optimization model, Part I: carbon emissions peak value prediction. Journal of Cleaner Production 172:466−74

doi: 10.1016/j.jclepro.2017.10.216
[3]

Song C. 2011. Parameter estimation of the pyrolysis model for fir based on particle swarm algorithm. In: 2011 second international conference on Mechanic Automation and Control Engineering, Hohhot, Inner Mongolia, China, 2011. USA: IEEE. pp. 2354-57. https://doi.org/10.1109/MACE.2011.5987453

[4]

Cai P, Nie W, Chen D, Yang S, Liu Z. 2019. Effect of air flowrate on pollutant dispersion pattern of coal dust particles at fully mechanized mining face based on numerical simulation. Fuel 239:623−35

doi: 10.1016/j.fuel.2018.11.030
[5]

Liu Q, Nie W, Hua Y, Peng H, Liu C, et al. 2019. Research on tunnel ventilation systems: dust diffusion and pollution behaviour by air curtains based on CFD technology and field measurement. Building and Environment 147:444−60

doi: 10.1016/j.buildenv.2018.08.061
[6]

Ferreiro AI, Rabacal M, Costa M. 2016. A combined genetic algorithm and least squares fitting procedure for the estimation of the kinetic parameters of the pyrolysis of agricultural residues. Energy Conversion and Management 125:290−300

doi: 10.1016/j.enconman.2016.04.104
[7]

Gong J, Zhu H, Zhou H, Stoliarov SI. 2021. Development of a pyrolysis model for oriented strand board. Part I: Kinetics and thermodynamics of the thermal decomposition. Journal of Fire Sciences 39:190−204

doi: 10.1177/0734904120982887
[8]

Ding Y, Zhang Y, Zhang J, Zhou R, Ren Z, et al. 2019. Kinetic parameters estimation of pinus sylvestris pyrolysis by Kissinger-Kai method coupled with Particle Swarm Optimization and global sensitivity analysis. Bioresource Technology 293:122079

doi: 10.1016/j.biortech.2019.122079
[9]

Ding Y, Huang B, Li K, Du W, Lu K, et al. 2020. Thermal interaction analysis of isolated hemicellulose and cellulose by kinetic parameters during biomass pyrolysis. Energy 195:117010

doi: 10.1016/j.energy.2020.117010
[10]

Li K, Huang X, Fleischmann C, Rein G, Ji J. 2014. Pyrolysis of medium-density fiberboard: optimized search for kinetics scheme and parameters via a genetic algorithm driven by Kissinger's method. Energy Fuels 28:6130−39

doi: 10.1021/ef501380c
[11]

Abdelouahed L, Leveneur S, Vernieres-Hassimi L, Balland L, Taouk B. 2017. Comparative investigation for the determination of kinetic parameters for biomass pyrolysis by thermogravimetric analysis. Journal of Thermal Analysis and Calorimetry 128:1201−13

doi: 10.1007/s10973-017-6212-9
[12]

Xu L, Jiang Y, Wang L. 2017. Thermal decomposition of rape straw: Pyrolysis modeling and kinetic study via particle swarm optimization. Energy Conversion and Management 146:124−33

doi: 10.1016/j.enconman.2017.05.020
[13]

Aghbashlo M, Tabatabaei M, Nadian MH, Davoodnia V, Soltanian S. 2019. Prognostication of lignocellulosic biomass pyrolysis behavior using ANFIS model tuned by PSO algorithm. Fuel 253:189−98

doi: 10.1016/j.fuel.2019.04.169
[14]

Ding Y, Zhang J, He Q, Huang B, Mao S. 2019. The application and validity of various reaction kinetic models on woody biomass pyrolysis. Energy 179:784−91

doi: 10.1016/j.energy.2019.05.021
[15]

Purnomo DMJ, Richter F, Bonner M, Vaidyanathan R, Rein G. 2020. Role of optimisation method on kinetic inverse modelling of biomass pyrolysis at the microscale. Fuel 262:116251

doi: 10.1016/j.fuel.2019.116251
[16]

Kennedy J, Eberhart R. 1995. Particle swarm optimization. Proceedings of ICNN'95 - International Conference on Neural Networks, Perth, WA, Australia, 1995. USA: IEEE. pp. 1942−48. https://doi.org/10.1109/ICNN.1995.488968

[17]

Ding Y, Wang C, Chaos M, Chen R, Lu S. 2016. Estimation of beech pyrolysis kinetic parameters by shuffled complex evolution. Bioresource Technology 200:658−65

doi: 10.1016/j.biortech.2015.10.082
[18]

Vyazovkin S, Chrissafis K, Di Lorenzo ML, Koga N, Pijolat M, et al. 2014. ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochimica Acta 590:1−23

doi: 10.1016/j.tca.2014.05.036
[19]

Kissinger HE. 1957. Reaction kinetics in differential thermal analysis. Analytical Chemistry 29(11):1702−6

doi: 10.1021/ac60131a045
[20]

Akahira T, Sunose T. 1971. Method of determining activation deterioration constant of electrical insulating materials. Research Report. Chiba Institute of Technology, Chiba, Japan. 16:22−31

[21]

Tang W, Liu Y, Zhang H, Wang C. 2003. New approximate formula for Arrhenius temperature integral. Thermochimica Acta 408:39−43

doi: 10.1016/S0040-6031(03)00310-1
[22]

Lang P, Liu P, Li Y, Li X, Lei T, et al. 2022. Study of pyrolysis kinetics and thermodynamic parameters of different woodchip biomasses. China Forest Products Industry 59:30−37

doi: 10.19531/j.issn1001-5299.202207006
[23]

Shi L, Gong J, Zhai C. 2022. Application of a hybrid PSO-GA optimization algorithm in determining pyrolysis kinetics of biomass. Fuel 323:124344

doi: 10.1016/j.fuel.2022.124344
[24]

Shi L, Zhai C, Gong J. 2023. A method for addressing compensation effect in determining kinetics of biomass pyrolysis. Fuel 335:127123

doi: 10.1016/j.fuel.2022.127123
[25]

Vyazovkin S, Burnham AK, Favergeon L. 2020. ICTAC Kinetics Committee recommendations for analysis of multi- step kinetics. Thermochimica Acta 689:178597

doi: 10.1016/j.tca.2020.178597
[26]

Liang B, Hu J, Yuan P, Li C, Li R, et al. 2019. Kinetics of the pyrolysis process of phthalonitrile resin. Thermochimica Acta 672:133−41

doi: 10.1016/j.tca.2018.12.025