[1]

Tebaldi C, West M. 1998. Bayesian inference on network traffic using link count data. Journal of the American Statistical Association 93:557−73

doi: 10.1080/01621459.1998.10473707
[2]

Carvalho L. 2014. A Bayesian statistical approach for inference on static origin–destination matrices in transportation studies. Technometrics 56:225−37

doi: 10.1080/00401706.2013.826144
[3]

Spiess H. 1987. A maximum likelihood model for estimating origin-destination matrices. Transportation Research Part B: Methodological 21:395−412

doi: 10.1016/0191-2615(87)90037-3
[4]

Chang GL, Tao X. 1999. An integrated model for estimating time-varying network origin-destination distributions. Transportation Research Part A: Policy and Practice 33:381−99

doi: 10.1016/S0965-8564(98)00038-X
[5]

Chen Y, Ordónez F, Palmer K. 2006. Confidence intervals for OD demand estimation. USC-ISE Working Paper 2006:1

[6]

Hazelton ML. 2008. Statistical inference for time varying origin-destination matrices. Transportation Research Part B: Methodological 42:542−52

doi: 10.1016/j.trb.2007.11.003
[7]

Djukic T, Flötteröd G, van Lint H, Hoogendoorn S. 2012. Efficient real time OD matrix estimation based on Principal Component Analysis. 2012 15th International IEEE Conference on Intelligent Transportation Systems, Anchorage, AK, USA, 2012. USA: IEEE. pp. 115−21. https://doi.org/10.1109/ITSC.2012.6338720

[8]

Shao H, Lam WHK, Sumalee A, Chen A, Hazelton ML. 2014. Estimation of mean and covariance of peak hour origin-destination demands from day-to-day traffic counts. Transportation Research Part B:Methodological 68:52−75

doi: 10.1016/j.trb.2014.06.002
[9]

Lu S, Wang J, Xue Z, Liu X. 2016. Traffic analysis and OD travel time matrix based on two-fluid model. Journal of Highway and Transportation Research and Development (English Edition) 10:78−84

doi: 10.1061/jhtrcq.0000522
[10]

Zhu X, Guo D. 2017. Urban event detection with big data of taxi OD trips: a time series decomposition approach. Transactions in GIS 21:560−74

doi: 10.1111/tgis.12288
[11]

Ren J, Xie Q. 2017. Efficient OD trip matrix prediction based on tensor decomposition. 2017 18th IEEE International Conference on Mobile Data Management (MDM), Daejeon, Korea (South), 2017. UAS: IEEE. pp. 180−85. https://doi.org/10.1109/MDM.2017.32

[12]

Li X, Kurths J, Gao C, Zhang J, Wang Z, et al. 2017. A hybrid algorithm for estimating origin-destination flows. IEEE Access 6:677−87

doi: 10.1109/ACCESS.2017.2774449
[13]

Li J, Wen H, Lin L, Qi W. 2018. Demand prediction model of E-hailing based on QPSO_RBF neural network. Journal of Guangxi University (Natural Science Edition) 43(2):700−9

doi: 10.13624/j.cnki.issn.1001-7445.2018.0700
[14]

Lu Y, Li S. 2014. An empirical study of with-in day OD prediction using taxi GPS data in Singapore. Report. No. 14-5074.

[15]

Hong WC. 2011. Traffic flow forecasting by seasonal SVR with chaotic simulated annealing algorithm. Neurocomputing 74(12–13):2096−107

doi: 10.1016/j.neucom.2010.12.032
[16]

Tong Y, Chen Y, Zhou Z, Chen L, Wang J, et al. 2017. The simpler the better: a unified approach to predicting original taxi demands based on large-scale online platforms. KDD '17: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada, 2017. New York, United States: Association for Computing Machinery. pp. 1653−62. https://doi.org/10.1145/3097983.3098018

[17]

Skarding J, Gabrys B, Musial K. 2021. Foundations and modeling of dynamic networks using dynamic graph neural networks: a survey. IEEE Access 9:79143−68

doi: 10.1109/ACCESS.2021.3082932
[18]

Huang H, Fang Z, Wang X, Miao Y, Jin H. 2020. Motif-Preserving Temporal Network Embedding. Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, Yokohama, Japan, 2020. California: International Joint Conferences on Artificial Intelligence Organization. pp. 1237−43. https://doi.org/10.24963/ijcai.2020/172

[19]

Trivedi R, Farajtabar M, Biswal P, et al. 2019. Dyrep: Learning representations over dynamic graphs. International Conference on Learning Representations.

[20]

Kumar S, Zhang X, Leskovec J. 2019. Predicting dynamic embedding trajectory in temporal interaction networks. KDD '19: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 2019. New York, United States: Association for Computing Machinery. pp. 1269−78. https://doi.org/10.1145/3292500.3330895

[21]

Lv Y, Duan Y, Kang W, Li Z, Wang FY. 2015. Traffic flow prediction with big data: a deep learning approach. IEEE Transactions on Intelligent Transportation Systems 16:865−73

doi: 10.1109/TITS.2014.2345663
[22]

Krupski J, Graniszewski W, Iwanowski M. 2021. Data transformation schemes for CNN-based network traffic analysis: a survey. Electronics 10:2042

doi: 10.3390/electronics10162042
[23]

Ranjan N, Bhandari S, Zhao HP, Kim H, Khan P. 2020. City-wide traffic congestion prediction based on CNN, LSTM and transpose CNN. IEEE Access 8:81606−20

doi: 10.1109/ACCESS.2020.2991462
[24]

Li X, Zhao Z, Wang Q. 2022. ABSSNet: attention-based spatial segmentation network for traffic scene understanding. IEEE Transactions on Cybernetics 52:9352−62

doi: 10.1109/TCYB.2021.3050558
[25]

Baheti B, Gajre S, Talbar S. 2019. Semantic scene understanding in unstructured environment with deep convolutional neural network. TENCON 2019 - 2019 IEEE Region 10 Conference (TENCON), 2019, Kochi, India, 2019. USA: IEEE. pp. 790−95. https://doi.org/10.1109/TENCON.2019.8929376

[26]

Haque WA, Arefin S, Shihavuddin ASM, Hasan MA. 2021. DeepThin: a novel lightweight CNN architecture for traffic sign recognition without GPU requirements. Expert Systems with Applications 168:114481

doi: 10.1016/j.eswa.2020.114481
[27]

Zhang J, Xie Z, Sun J, Zou X, Wang J. 2020. A cascaded R-CNN with multiscale attention and imbalanced samples for traffic sign detection. IEEE Access 8:29742−54

doi: 10.1109/ACCESS.2020.2972338
[28]

Bogaerts T, Masegosa AD, Angarita-Zapata JS, Onieva E, Hellinckx P. 2020. A graph CNN-LSTM neural network for short and long-term traffic forecasting based on trajectory data. Transportation Research Part C: Emerging Technologies 112:62−77

doi: 10.1016/j.trc.2020.01.010
[29]

Zhou Z, Qin Y, Luo H. 2021. Deep spatio-temporal convolutional neural network for city traffic flow prediction. 2021 2nd International Conference on Computing and Data Science (CDS), Stanford, CA, USA, 2021. USA: IEEE. pp. 171−75. https://doi.org/10.1109/CDS52072.2021.00037

[30]

Guo S, Lin Y, Li S, Chen Z, Wan H. 2019. Deep spatial–temporal 3D convolutional neural networks for traffic data forecasting. IEEE Transactions on Intelligent Transportation Systems 20:3913−26

doi: 10.1109/TITS.2019.2906365
[31]

Ma X, Dai Z, He Z, Ma J, Wang Y, et al. 2017. Learning traffic as images: a deep convolutional neural network for large-scale transportation network speed prediction. Sensors 17:818

doi: 10.3390/s17040818
[32]

Ran J, Chen Y, Li S. 2019. Three-dimensional convolutional neural network based traffic classification for wireless communications. 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Anaheim, CA, USA, 2018. USA: IEEE. pp. 624−27. https://doi.org/10.1109/GlobalSIP.2018.8646659

[33]

Zhu J, Wang Q, Tao C, Deng H, Zhao L, et al. 2021. AST-GCN: attribute-augmented spatiotemporal graph convolutional network for traffic forecasting. IEEE Access 9:35973−83

doi: 10.1109/ACCESS.2021.3062114
[34]

Li Z, Xiong G, Chen Y, Lv Y, Hu B, et al. 2019. A hybrid deep learning approach with GCN and LSTM for traffic flow prediction. 2019 IEEE Intelligent Transportation Systems Conference (ITSC), Auckland, New Zealand, 2019. USA: IEEE. pp. 1929−33. https://doi.org/10.1109/ITSC.2019.8916778

[35]

Diao Z, Xie G, Wang X, Ren R, Meng X, et al. 2023. EC-GCN: a encrypted traffic classification framework based on multi-scale graph convolution networks. Computer Networks 224:109614

doi: 10.1016/j.comnet.2023.109614
[36]

Guo K, Hu Y, Sun Y, Qian S, Gao J, et al. 2021. Hierarchical graph convolution network for traffic forecasting. Proceedings of the AAAI Conference on Artificial Intelligence 35:151−59

doi: 10.1609/aaai.v35i1.16088
[37]

Dong X, Thanou D, Rabbat M, Frossard P. 2019. Learning graphs from data: a signal representation perspective. IEEE Signal Processing Magazine 36:44−63

doi: 10.1109/MSP.2018.2887284
[38]

Geng X, Li Y, Wang L, Zhang L, Yang Q, et al. 2019. Spatiotemporal multi-graph convolution network for ride-hailing demand forecasting. Proceedings of the AAAI Conference on Artificial Intelligence 33:3656−63

doi: 10.1609/aaai.v33i01.33013656
[39]

Cui Z, Henrickson K, Ke R, Wang Y. 2020. Traffic graph convolutional recurrent neural network: a deep learning framework for network-scale traffic learning and forecasting. IEEE Transactions on Intelligent Transportation Systems 21:4883−94

doi: 10.1109/TITS.2019.2950416
[40]

Ali A, Zhu Y, Chen Q, Yu J, Cai H. 2020. Leveraging spatio-temporal patterns for predicting citywide traffic crowd flows using deep hybrid neural networks. 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS), Tianjin, China, 2019. USA: IEEE. pp. 125−32. https://doi.org/10.1109/ICPADS47876.2019.00025

[41]

Yu L, Du B, Hu X, Sun L, Han L, et al. 2021. Deep spatio-temporal graph convolutional network for traffic accident prediction. Neurocomputing 423:135−47

doi: 10.1016/j.neucom.2020.09.043
[42]

Li M, Zhu Z. 2021. Spatial-temporal fusion graph neural networks for traffic flow forecasting. Proceedings of the AAAI Conference on Artificial Intelligence 35:4189−96

doi: 10.1609/aaai.v35i5.16542
[43]

Wang X, Ma Y, Wang Y, Jin W, Wang X, et al. 2020. Traffic flow prediction via spatial temporal graph neural network. WWW '20: Proceedings of The Web Conference 2020, Taipei, Taiwan, 2020. New York, United States: Association for Computing Machinery. pp. 1082−92. https://doi.org/10.1145/3366423.3380186

[44]

Zhang Q, Yu K, Guo Z, Garg S, Rodrigues JJPC, et al. 2021. Graph neural network-driven traffic forecasting for the connected internet of vehicles. IEEE Transactions on Network Science and Engineering 9(5):3015−27

doi: 10.1109/TNSE.2021.3126830
[45]

Liu T, Wu W, Zhu Y, Tong W. 2020. Predicting taxi demands via an attention-based convolutional recurrent neural network. Knowledge-Based Systems 206:106294

doi: 10.1016/j.knosys.2020.106294
[46]

Rossi A, Barlacchi G, Bianchini M, Lepri B. 2020. Modelling taxi drivers’ behaviour for the next destination prediction. IEEE Transactions on Intelligent Transportation Systems 21:2980−89

doi: 10.1109/TITS.2019.2922002
[47]

Tian Y, Pan L. 2016. Predicting short-term traffic flow by long short-term memory recurrent neural network. 2015 IEEE International Conference on Smart City/SocialCom/SustainCom (SmartCity), Chengdu, China 2015. USA: IEEE. pp. 153−58. https://doi.org/10.1109/SmartCity.2015.63

[48]

Fukuda S, Uchida H, Fujii H, Yamada T. 2020. Short-term prediction of traffic flow under incident conditions using graph convolutional recurrent neural network and traffic simulation. IET Intelligent Transport Systems 14:936−46

doi: 10.1049/iet-its.2019.0778
[49]

Kim K, Lee JH, Lim HK, Oh S, Han YH. 2022. Deep RNN-based network traffic classification scheme in edge computing system. Computer Science and Information Systems 19:165−84

doi: 10.2298/csis200424038k
[50]

Paul A, Mitra S. 2021. Management of traffic signals using deep reinforcement learning in bidirectional recurrent neural network in ITS. ISMSI '21: Proceedings of the 2021 5th International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence, Victoria, Seychelles, 2021. New York, United States: Association for Computing Machinery. pp. 60−64. https://doi.org/10.1145/3461598.3461608

[51]

Li M, Wang Y, Wang Z, Zheng H. 2020. A deep learning method based on an attention mechanism for wireless network traffic prediction. Ad Hoc Networks 107:102258

doi: 10.1016/j.adhoc.2020.102258
[52]

Lai Y, Zhang K, Lin J, Yang F, Fan Y. 2020. Taxi demand prediction with LSTM-based combination model. 2019 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom), Xiamen, China, 2019. USA: IEEE. pp. 944−50. https://doi.org/10.1109/ISPA-BDCloud-SustainCom-SocialCom48970.2019.00137

[53]

Nihale S, Sharma S, Parashar L, Singh U. 2020. Network traffic prediction using long short-term memory. 2020 International Conference on Electronics and Sustainable Communication Systems (ICESC), Coimbatore, India, 2020. USA: IEEE. pp. 338−43. https://doi.org/10.1109/ICESC48915.2020.9156045

[54]

Zeng C, Ma C, Wang K, Cui Z. 2022. Predicting vacant parking space availability: a DWT-Bi-LSTM model. Physica A: Statistical Mechanics and Its Applications 599:127498

doi: 10.1016/j.physa.2022.127498
[55]

Fu R, Zhang Z, Li L. 2017. Using LSTM and GRU neural network methods for traffic flow prediction. 2016 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC), Wuhan, China, 2016. USA: IEEE. pp. 324−28. https://doi.org/10.1109/YAC.2016.7804912

[56]

Zhao J, Kong W, Zhou M, Zhou T, Xu Y, et al. 2022. Prediction of urban taxi travel demand by using hybrid dynamic graph convolutional network model. Sensors 22:5982

doi: 10.3390/s22165982
[57]

Abideen ZU, Sun H, Yang Z, Ahmad RZ, Iftekhar A, et al. 2020. Deep wide spatial-temporal based transformer networks modeling for the next destination according to the taxi driver behavior prediction. Applied Sciences 11:17

doi: 10.3390/app11010017
[58]

Tsiligkaridis A, Zhang J, Taguchi H, Nikovski D. 2020. Personalized destination prediction using transformers in a contextless data setting. 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 2020. USA: IEEE. pp. 1−7. https://doi.org/10.1109/IJCNN48605.2020.9207514

[59]

Li D, Lin C, Gao W, Chen Z, Wang Z, et al. 2020. Capsules TCN network for urban computing and intelligence in urban traffic prediction. Wireless Communications and Mobile Computing 2020:6896579

doi: 10.1155/2020/6896579
[60]

Wang Y, Li J, Zhao A, Lv Z, Lu G. 2021. Temporal attention-based graph convolution network for taxi demand prediction in functional areas. WASA 2021: Wireless Algorithms, Systems, and Applications, Nanjing, China, 2021. Switzerland: Springer, Cham. pp. 203−14. https://doi.org/10.1007/978-3-030-85928-2_16

[61]

Xu J, Rahmatizadeh R, Bölöni L, Turgut D. 2018. Real-time prediction of taxi demand using recurrent neural networks. IEEE Transactions on Intelligent Transportation Systems 19:2572−81

doi: 10.1109/TITS.2017.2755684
[62]

Chang HW, Tai YC, Hsu JYJ. 2010. Context-aware taxi demand hotspots prediction. International Journal of Business Intelligence and Data Mining 5:3−18

doi: 10.1504/IJBIDM.2010.030296
[63]

Tong Y, Chen Y, Zhou Z, Chen L, Wang J, et al. 2017. The simpler the better: a unified approach to predicting original taxi demands based on large-scale online platforms. KDD '17: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada, 2017. New York, United States: Association for Computing Machinery. pp. 1653−62. https://doi.org/10.1145/3097983.3098018

[64]

Vanichrujee U, Horanont T, Pattara-atikom W, Theeramunkong T, Shinozaki T. 2018. Taxi demand prediction using ensemble model based on RNNs and XGBOOST. 2018 International Conference on Embedded Systems and Intelligent Technology & International Conference on Information and Communication Technology for Embedded Systems (ICESIT-ICICTES), Khon Kaen, Thailand. USA: IEEE. pp. 1−6. https://doi.org/10.1109/ICESIT-ICICTES.2018.8442063

[65]

Xu Y, Li D. 2019. Incorporating graph attention and recurrent architectures for city-wide taxi demand prediction. ISPRS International Journal of Geo-Information 8:414

doi: 10.3390/ijgi8090414
[66]

Liu Y, Liu Z, Lyu C, Ye J. 2020. Attention-based deep ensemble net for large-scale online taxi-hailing demand prediction. IEEE Transactions on Intelligent Transportation Systems 21:4798−807

doi: 10.1109/TITS.2019.2947145
[67]

Kuang L, Yan X, Tan X, Li S, Yang X. 2019. Predicting taxi demand based on 3D convolutional neural network and multi-task learning. Remote Sensing 11:1265

doi: 10.3390/rs11111265
[68]

Duan ZT, Zhang K, Yang Y, Ni YY, Saurab B. 2018. Taxi demand prediction based on CNN-LSTM-ResNet hybrid depth learning model. Journal of Transportation Systems Engineering and Information Technology 18(4):215−23

doi: 10.16097/j.cnki.1009-6744.2018.04.032
[69]

Zhang C, Zhu F, Wang X, Sun L, Tang H, et al. 2022. Taxi demand prediction using parallel multi-task learning model. IEEE Transactions on Intelligent Transportation Systems 23:794−803

doi: 10.1109/TITS.2020.3015542
[70]

Chen Z, Zhao B, Wang Y, Duan Z, Zhao X. 2020. Multitask learning and GCN-based taxi demand prediction for a traffic road network. Sensors 20:3776

doi: 10.3390/s20133776
[71]

Liu L, Qiu Z, Li G, Wang Q, Ouyang W, et al. 2019. Contextualized spatial–temporal network for taxi origin-destination demand prediction. IEEE Transactions on Intelligent Transportation Systems 20:3875−87

doi: 10.1109/TITS.2019.2915525
[72]

Duan Z, Zhang K, Chen Z, Liu Z, Tang L, et al. 2019. Prediction of city-scale dynamic taxi origin-destination flows using a hybrid deep neural network combined with travel time. IEEE Access 7:127816−32

doi: 10.1109/ACCESS.2019.2939902
[73]

Chu KF, Lam AYS, Li VOK. 2020. Deep multi-scale convolutional LSTM network for travel demand and origin-destination predictions. IEEE Transactions on Intelligent Transportation Systems 21:3219−32

doi: 10.1109/TITS.2019.2924971
[74]

Wang Y, Yin H, Chen H, Wo T, Xu J, et al. 2019. Origin-destination matrix prediction via graph convolution: a new perspective of passenger demand modeling. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. August 4 - 8, 2019, Anchorage, AK, USA. ACM: 1227−35

[75]

Xiong X, Ozbay K, Jin L, Feng C. 2020. Dynamic origin–destination matrix prediction with line graph neural networks and Kalman filter. Transportation Research Record: Journal of the Transportation Research Board 2674:491−503

doi: 10.1177/0361198120919399
[76]

Zhang J, Che H, Chen F, Ma W, He Z. 2020. Short-term origin-destination demand prediction in urban rail transit systems: a channel-wise attentive split-convolutional neural network method. arXiv In press

doi: 10.48550/arXiv.2008.08036
[77]

Shi H, Yao Q, Guo Q, Li Y, Zhang L, et al. 2020. Predicting origin-destination flow via multi-perspective graph convolutional network. 2020 IEEE 36th International Conference on Data Engineering (ICDE), Dallas, TX, USA, 2020. USA: IEEE. pp. 1818−21. https://doi.org/10.1109/ICDE48307.2020.00178

[78]

Chen P, Fu X, Wang X. 2022. A graph convolutional stacked bidirectional unidirectional-LSTM neural network for metro ridership prediction. IEEE Transactions on Intelligent Transportation Systems 23:6950−62

doi: 10.1109/TITS.2021.3065404
[79]

Ke J, Qin X, Yang H, Zheng Z, Zhu Z, et al. 2021. Predicting origin-destination ride-sourcing demand with a spatio-temporal encoder-decoder residual multi-graph convolutional network. Transportation Research Part C: Emerging Technologies 122:102858

doi: 10.1016/j.trc.2020.102858
[80]

Zhang D, Xiao F, Shen M, Zhong S. 2021. DNEAT: a novel dynamic node-edge attention network for origin-destination demand prediction. Transportation Research Part C: Emerging Technologies 122:102851

doi: 10.1016/j.trc.2020.102851
[81]

Chen D, Wang J, Xiong C. 2021. Research on origin-destination travel demand prediction method of inter-regional online taxi based on SpatialOD-BiConvLSTM. IET Intelligent Transport Systems 15:1533−47

doi: 10.1049/itr2.12119
[82]

Han L, Ma X, Sun L, Du B, Fu Y, et al. 2022. Continuous-time and multi-level graph representation learning for origin-destination demand prediction. KDD '22: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington DC, USA, 2022. New York, United States: Association for Computing Machinery. pp. 516−24. https://doi.org/10.1145/3534678.3539273

[83]

Zhang R, Han L, Liu B, Zeng J, Sun L. 2022. Dynamic graph learning based on hierarchical memory for origin-destination demand prediction. arXiv In press

doi: 10.48550/arXiv.2205.14593
[84]

Zhuang D, Wang S, Koutsopoulos H N, et al. 2022. Uncertainty quantification of sparse travel demand prediction with spatial-temporal graph neural networks. Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD '22), Washington DC, USA, 2022. New York, United States: Association for Computing Machinery. pp. 4639–47. https://doi.org/10.1145/3534678.3539093

[85]

Hu J, Yang B, Guo C, Jensen CS, Xiong H. 2020. Stochastic origin-destination matrix forecasting using dual-stage graph convolutional, recurrent neural networks. 2020 IEEE 36th International Conference on Data Engineering (ICDE), Dallas, TX, USA, 2020. USA: IEEE. pp. 1417−28. https://doi.org/10.1109/ICDE48307.2020.00126

[86]

Huang B, Ruan K, Yu W, Xiao J, Xie R, et al. 2023. ODformer: spatial–temporal transformers for long sequence Origin–Destination matrix forecasting against cross application scenario. Expert Systems with Applications 222:119835

doi: 10.1016/j.eswa.2023.119835
[87]

Yao X, Gao Y, Zhu D, Manley E, Wang J, et al. 2021. Spatial origin-destination flow imputation using graph convolutional networks. IEEE Transactions on Intelligent Transportation Systems 22:7474−84

doi: 10.1109/TITS.2020.3003310
[88]

Zou X, Zhang S, Zhang C, Yu JJQ, Chung E. 2022. Long-term origin-destination demand prediction with graph deep learning. IEEE Transactions on Big Data 8:1481−95

doi: 10.1109/TBDATA.2021.3063553
[89]

Wang N, Zheng L, Shen H, Li S. 2023. Ride-hailing origin-destination demand prediction with spatiotemporal information fusion. Transportation Safety and Environment Accepted paper:tdad026

doi: 10.1093/tse/tdad026
[90]

Huang Z, Zhang W, Wang D, Yin Y. 2022. A GAN framework-based dynamic multi-graph convolutional network for origin-destination-based ride-hailing demand prediction. Information Sciences 601:129−46

doi: 10.1016/j.ins.2022.04.024
[91]

Yang Y, Zhang S, Zhang C, Yu JJQ. 2021. Origin-destination matrix prediction via hexagon-based generated graph. 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), Indianapolis, IN, USA, 2021. USA: IEEE. pp. 1399−404. https://doi.org/10.1109/ITSC48978.2021.9564718

[92]

Li D, Wang W, Zhao D. 2023. Designing a novel two-stage fusion framework to predict short-term origin–destination flow. Journal of Transportation Engineering-Part A: Systems 149(5):04023032

doi: 10.1061/JTEPBS.TEENG-7573
[93]

Peng Z, Wu G, Xia F. 2021. Clustering shift graph convolutional network for taxi origin-destination demand prediction. 2021 IEEE 33rd International Conference on Tools with Artificial Intelligence (ICTAI), Washington, DC, USA, 2021. USA: IEEE. pp. 268−72. https://doi.org/10.1109/ICTAI52525.2021.00044

[94]

Bhanu M, Kumar R, Roy S, Mendes-Moreira J, Chandra J. 2022. Graph multi-head convolution for spatio-temporal attention in origin destination tensor prediction. In PAKDD 2022: Advances in Knowledge Discovery and Data Mining, eds. Gama J, Li T, Yu Y, Chen E, Zheng Y, et al. Switzerland: Springer Cham. pp. 459−71. https://doi.org/10.1007/978-3-031-05933-9_36

[95]

Chen T, Nie L, Pan J, Tu L, Zheng B, et al. 2023. Origin-destination traffic prediction based on hybrid spatio-temporal network. 2022 IEEE International Conference on Data Mining (ICDM), Orlando, FL, USA, 2022. USA: IEEE. pp. 879−84. https://doi.org/10.1109/ICDM54844.2022.00101

[96]

Cao Y, Liu L, Dong Y. 2023. Convolutional long short-term memory two-dimensional bidirectional graph convolutional network for taxi demand prediction. Sustainability 15:7903

doi: 10.3390/su15107903
[97]

Shuai C, Zhang X, Wang Y, He M, Yang F, et al. 2023. Online car-hailing origin-destination forecast based on a temporal graph convolutional network. IEEE Intelligent Transportation Systems Magazine 15:121−36

doi: 10.1109/MITS.2023.3244935