[1]

Stanaway JD, Afshin A, Ashbaugh C, Bisignano C, Brauer M, et al. 2022. Health effects associated with vegetable consumption: a burden of proof study. Nature Medicine 28(10):2066−74

doi: 10.1038/s41591-022-01970-5
[2]

Chen T, Xing J, El-Mogy M, Wang Y. 2022. Editorial: Nutritional quality formation and maintenance of horticultural crops. Frontiers in Plant Science 13:1005338

doi: 10.3389/fpls.2022.1005338
[3]

Bancal V, Ray RC. 2022. Overview of food loss and waste in fruits and vegetables: From issue to resources. In Fruits and Vegetable Wastes, ed. Ray RC. Singapore: Springer. pp. 3−29. https://doi.org/10.1007/978-981-16-9527-8_1

[4]

Pinto de Rezende L, Barbosa J, Teixeira P. 2022. Analysis of alternative shelf life-extending protocols and their effect on the preservation of seafood products. Foods 11(8):1100

doi: 10.3390/foods11081100
[5]

Yadav A, Kumar N, Upadhyay A, Pratibha, Anurag RK. 2023. Edible packaging from fruit processing waste: A comprehensive review. Food Reviews International 106:2075−32

doi: 10.1080/87559129.2021.1940198
[6]

Benbettaïeb N, Debeaufort F, Karbowiak T. 2019. Bio-active edible films for food applications: Mechanisms of antimicrobial and antioxidant activity. Critical Reviews in Food Science and Nutrition 21:3431−55

doi: 10.1080/10408398.2018.1494132
[7]

Cheng H, Chen L, McClements DJ, Yang T, Zhang Z, et al. 2021. Starch-based biodegradable packaging materials: A review of their preparation characterization and diverse applications in the food industry. Trends in Food Science & Technology 114:70−82

doi: 10.1016/j.jpgs.2021.05.017
[8]

Kumar N, Neeraj. 2019. Polysaccharide-based component and their relevance in edible film/coating: A review. Nutrition & Food Science 49(5):793−823

doi: 10.1108/nfs-10-2018-0294
[9]

Kumar N, Pratibha, Trajkovska Petkoska A, Khojah E, Sami R, et al. 2021. Chitosan edible films enhanced with pomegranate peel extract: Study on physical, biological, thermal, and barrier properties. Materials 14(12):3305

doi: 10.3390/ma14123305
[10]

Oliani WL, Pusceddu FH, Parra DF. 2022. Silver-titanium polymeric nanocomposite non ecotoxic with bactericide activity. Polymer Bulletin 79:10949−68

doi: 10.1007/s00289-021-04036-7
[11]

Sharma B, Malik P, Jain P. 2018. Biopolymer reinforced nanocomposites: A comprehensive review. Materials Today Communications 16:353−63

doi: 10.1016/j.mtcomm.2018.07.004
[12]

Xiong R, Grant AM, Ma R, Zhang S, Tsukruk VV. 2018. Naturally-derived biopolymer nanocomposites: Interfacial design, properties and emerging applications. Materials Science and Engineering: Reports 125:1−41

doi: 10.1016/j.mser.2018.01.002
[13]

Garg R, Rani P, Garg R, Eddy NO. 2021. Study on potential applications and toxicity analysis of green synthesized nanoparticles. Turkish Journal of Chemistry 45(6):1690−706

doi: 10.3906/kim-2106-59
[14]

Arabpoor B, Yousefi S, Weisany W, Ghasemlou M. 2021. Multifunctional coating composed of Eryngium campestre L. essential oil encapsulated in nano-chitosan to prolong the shelf-life of fresh cherry fruits. Food Hydrocolloids 111:106394

doi: 10.1016/j.foodhyd.2020.106394
[15]

Eshghi S, Karimi R, Shiri A, Karami M, Moradi M. 2022. Effects of polysaccharide-based coatings on postharvest storage life of grape: Measuring the changes in nutritional, antioxidant and phenolic compounds. Journal of Food Measurement and Characterization 16(2):1159−70

doi: 10.1007/s11694-021-01275-0
[16]

Sreelatha S, Kumar N, Yin TS, Rajani S. 2022. Evaluating the antibacterial activity and mode of action of thymol-loaded chitosan nanoparticles against plant bacterial pathogen Xanthomonas campestris pv campestris. Frontiers in Microbiology 12:792737

doi: 10.3389/fmicb.2021.792737
[17]

Nasr F, Pateiro M, Rabiei V, Razavi F, Formaneck S, et al. 2021. Chitosan-phenylalanine nanoparticles (Cs-Phe Nps) extend the postharvest life of persimmon (Diospyros kaki) fruits under chilling stress. Coatings 11(7):819

doi: 10.3390/coatings11070819
[18]

Ahmed J, Arfat YA, Bher A, Mulla M, Jacob H, et al. 2018. Active chicken meat packaging based on polylactide films and bimetallic Ag–Cu nanoparticles and essential oil. Journal of Food Science 83(5):1299−310

doi: 10.1111/1750-3841.14121
[19]

Zare M, Namratha K, Ilyas S, Hezam A, Mathur S, et al. 2019. Smart fortified PHBV-CS biopolymer with ZnO–Ag nanocomposites for enhanced shelf life of food packaging. ACS Applied Materials & Interfaces 11(51):48309−20

doi: 10.1021/acsami.9b15724
[20]

Salem EA, Nawito MA, El-Raouf Ahmed AEA. 2019. Effect of silver nano-particles on gray mold of tomato fruits. Journal of Nanotechnology Research 1(4):108−18

doi: 10.26502/jnr.2688-8521009
[21]

Wen Y, Yuan J, Ma X, Wang S, Liu Y. 2019. Polymeric nanocomposite membranes for water treatment: a review. Environmental Chemistry Letters1539−51

doi: 10.1007/s10311-019-00895-9
[22]

Popović SZ, Lazić VL, Hromiš NM, Šuput DZ, Bulut SN. 2018. Biopolymer packaging materials for food shelf-life prolongation. In Biopolymers for Food Design, eds. Grumezescu AM, Holban AM. UK: Academic Press. pp. 223−77. https://doi.org/10.1016/b978-0-12-811449-0.00008-6

[23]

Gómez-Estaca J, Gavara R, Catalá R, Hernández-Muñoz P. 2016. The potential of proteins for producing food packaging materials: A review. Packaging Technology and Science 29(4-5):203−24

doi: 10.1002/pts.2198
[24]

Nechita P, Roman M. 2020. Review on polysaccharides used in coatings for food packaging papers. Coatings 10(6):566

doi: 10.3390/coatings10060566
[25]

Brody AL. 2003. "Nano, Nano" food packaging technology - Packaging. Food Technology 57(12):52−54

[26]

Downing-Perrault AL. 2005. Polymer nanocomposites are the future. Report. University of Wisconsin-Stout, Menomonie, Wis, USA.

[27]

Weiss J, Takhistov P, McClements DJ. 2006. Functional materials in food nanotechnology. Journal of Food Science 71:R107−R116

doi: 10.1111/j.1750-3841.2006.00195.x
[28]

Steinvil A, Zhang YJ, Lee SY, Pang S, Waksman R, et al. 2016. Intravascular ultrasound-guided drug-eluting stent implantation: An updated meta-analysis of randomized control trials and observational studies. The International Journal of Cardiology 216:133−39

doi: 10.1016/j.ijcard.2016.04.154
[29]

Chaudhry Q, Scotter M, Blackburn J, Ross B, Boxall A, et al. 2008. Applications and implications of nanotechnologies for the food sector. Food Additives and Contaminants: Part A 25:241−58

doi: 10.1080/02652030701744538
[30]

Adeyeye OA, Sadiku ER, Reddy AB, Ndamase AS, Makgatho G, et al. 2019. The use of biopolymers in food packaging. In Green Biopolymers and Their Nanocomposites, ed. Gnanasekaran D. Singapore: Springer. pp. 137–58. https://doi.org/10.1007/978-981-13-8063-1_6

[31]

Yadav A, Mangaraj S, Singh R, Kumar N, Arora S. 2018. Biopolymers as packaging material in food and allied industry. International Journal of Chemical studies 6(2):2411−18

[32]

Wróblewska-Krepsztul J, Rydzkowski T, Borowski G, Szczypiński M, Klepka T, Thakur VK. 2018. Recent progress in biodegradable polymers and nanocomposite-based packaging materials for sustainable environment. International Journal of Polymer Analysis and Characterization 23:383−95

doi: 10.1080/1023666X.2018.1455382
[33]

Siakeng R, Jawaid M, Ariffin H, Sapuan SM, Asim M, et al. 2019. Natural fiber reinforced polylactic acid composites: A review. Polymer Composites 40:446−63

doi: 10.1002/pc.24747
[34]

Gonçalves de Moura I, Vasconcelos de Sá A, Lemos Machado Abreu AS, Alves Machado AV. 2017. Bioplastics from agro-wastes for food packaging applications. In Food Packaging, ed. Grumezescu AM. UK: Academic Press. pp. 223−63. https://doi.org/10.1016/b978-0-12-804302-8.00007-8

[35]

Emamifar A, Bavaisi S. 2020. Nanocomposite coating based on sodium alginate and nano-ZnO for extending the storage life of fresh strawberries (Fragaria × ananassa Duch). Journal of Food Measurement and Characterization 14(2):1012−24

doi: 10.1007/s11694-019-00350-x
[36]

Chi H, Song S, Luo M, Zhang C, Li W, et al. 2019. Effect of PLA nanocomposite films containing bergamot essential oil, TiO2 nanoparticles, and Ag nanoparticles on shelf life of mangoes. Scientia Horticulturae 249:192−98

doi: 10.1016/j.scienta.2019.01.059
[37]

Zhang C, Li W, Zhu B, Chen H, Chi H, et al. 2018. The quality evaluation of postharvest strawberries stored in nano-Ag packages at refrigeration temperature. Polymers 10(8):894

doi: 10.3390/polym10080894
[38]

Resende NS, Gonçalves GAS, Reis KC, Tonoli GHD, Boas EVBV. 2018. Chitosan/cellulose nanofibril nanocomposite and its effect on quality of coated strawberries. Journal of Food Quality 2018:1727426

doi: 10.1155/2018/1727426
[39]

Li W, Li L, Cao Y, Lan T, Chen H, et al. 2017. Effects of PLA film incorporated with ZnO nanoparticle on the quality attributes of fresh-cut apple. Nanomaterials 7(8):207

doi: 10.3390/nano7080207
[40]

Lin B, Luo Y, Teng Z, Zhang B, Zhou B, et al. 2015. Development of silver/titanium dioxide/chitosan adipate nanocomposite as an antibacterial coating for fruit storage. LWT - Food Science and Technology 63(2):1206−13

doi: 10.1016/j.lwt.2015.04.049
[41]

Fadeyibi A. 2019. Optimization of processing parameters of nanocomposite film for fresh sliced okra packaging. Journal of Applied Packaging Research 11(2):1 https://scholarworks.rit.edu/japr/vol11/iss2/1

[42]

Meindrawan B, Suyatma NE, Wardana AA, Pamela VY. 2018. Nanocomposite coating based on carrageenan and ZnO nanoparticles to maintain the storage quality of mango. Food Packaging Shelf Life 18:140−6

doi: 10.1016/j.fpsl.2018.10.006
[43]

Prakash A, Baskaran R, Vadivel V. 2020. Citral nanoemulsion incorporated edible coating to extend the shelf life of fresh cut pineapples. LWT - Food Science and Technology 118:108851

doi: 10.1016/j.lwt.2019.108851
[44]

Saravanakumar K, Hu X, Chelliah R, Oh DH, Kathiresan K, et al. 2020. Biogenic silver nanoparticles-polyvinylpyrrolidone based glycerosomes coating to expand the shelf life of fresh-cut bell pepper (Capsicum annuum L. var. grossum (L.) Sendt). Postharvest Biology and Technology 160:111039

doi: 10.1016/j.postharvbio.2019.111039
[45]

Kanikireddy V, Varaprasad K, Rani MS, Venkataswamy P, Mohan Reddy BJ, et al. 2020. Biosynthesis of CMC-Guar gum-Ag0 nanocomposites for inactivation of food pathogenic microbes and its effect on the shelf life of strawberries. Carbohydrate polymers 236:116053

doi: 10.1016/j.carbpol.2020.116053
[46]

Kumar N, Kaur P, Devgan K, Attkan AK. 2020. Shelf life prolongation of cherry tomato using magnesium hydroxide reinforced bio-nanocomposite and conventional plastic films. Journal of Food Processing and Preservation 44(4):e14379

doi: 10.1111/jfpp.14379
[47]

Dey D, Dharini V, Periyar Selvam S, Rotimi Sadiku E, Mahesh Kumar M, et al. 2021. Physical, antifungal, and biodegradable properties of cellulose nanocrystals and chitosan nanoparticles for food packaging application. Materials Today Proceedings 38:860−69

doi: 10.1016/j.matpr.2020.04.885
[48]

Pacaphol K, Seraypheap K, Aht-Ong D. 2019. Development and application of nanofibrillated cellulose coating for shelf life extension of fresh-cut vegetable during postharvest storage. Carbohydrate Polymers 224:115167

doi: 10.1016/j.carbpol.2019.115167
[49]

Silvestre C, Duraccio D, Cimmino S. 2011. Food packaging based on polymer nanomaterials. Progress in Polymer Science 36(12):1766−82

doi: 10.1016/j.progpolymsci.2011.02.003
[50]

Jain A, Ranjan S, Dasgupta N, Ramalingam C. 2018. Nanomaterials in food and agriculture: an overview on their safety concerns and regulatory issues. Critical Reviews in Food Science and Nutrition 58(2):297−317

doi: 10.1080/10408398.2016.1160363
[51]

Echegoyen Y, Nerín C. 2013. Nanoparticle release from nano-silver antimicrobial food containers. Food and Chemical Toxicology 62:16−22

doi: 10.1016/j.fct.2013.08.014
[52]

Cushen M, Kerry J, Morris M, Cruz-Romero M, Cummins E. 2014. Evaluasian and simulation of silver and copper nanoparticle migration from polyethylene nanocomposites to food and an associated exposure assessment. Journal of Agricultural and Food Chemistry 62(6):1403−11

doi: 10.1021/jf404038y
[53]

Restuccia D, Spizzirri UG, Parisi OI, Cirillo G, Curcio M, et al. 2010. New EU regulation aspects and global market of active and intelligent packaging for food industry applications. Food Control 21(11):1425−35

doi: 10.1016/j.foodcont.2010.04.028
[54]

Paradise J. 2019. Regulating nanomedicine at the food and drug administration. AMA Journal of Ethics 21(4):E347−E355

doi: 10.1001/amajethics.2019.347
[55]

Guidance D. 2011. Guidance for industry considering whether an FDA-regulated product involves the application of nanotechnology. Biotechnology Law Report 30(5):613−16

doi: 10.1089/blr.2011.9814