[1] |
Pal A, Swain SS, Das AB, Mukherjee AK, Chand PK. 2013. Stable germ line transformation of a leafy vegetable crop amaranth (Amaranthus tricolor L.) mediated by Agrobacterium tumefaciens. In Vitro Cellular & Developmental Biology - Plant 49:114−28 doi: 10.1007/s11627-013-9489-9 |
[2] |
Rastogi A, Shukla S. 2013. Amaranth: a new millennium crop of nutraceutical values. Critical reviews in food science and nutrition 53:109−25 doi: 10.1080/10408398.2010.517876 |
[3] |
Andini R, Yoshida S, Ohsawa R. 2013. Variation in protein content and amino acids in the leaves of grain, vegetable and weedy types of Amaranths. Agronomy 3:391−403 doi: 10.3390/agronomy3020391 |
[4] |
Bang JH, Lee KJ, Jeong WT, Han S, Jo IH, et al. 2021. Antioxidant activity and phytochemical content of nine Amaranthus species. Agronomy 11:1032 doi: 10.3390/agronomy11061032 |
[5] |
Mohiuddin YG, Nathar VN, Aziz WN, Gaikwad NB. 2018. Induction of callus and preliminary phytochemical profiling from callus of Artemisia absinthium L. and Artemisia pallens Wall. International Journal of Current Trends in Science and Technology 8:20236−41 |
[6] |
Zafari S, Sharifi M, Chashmi NA. 2018. A comparative study of biotechnological approaches for producing valuable flavonoids in Prosopis farcta. Cytotechnology 70:603−14 doi: 10.1007/s10616-017-0143-y |
[7] |
Adil M, Ren X, Kang DI, Thi LT, Jeong BR. 2018. Effect of explant type and plant growth regulators on callus induction, growth and secondary metabolites production in Cnidium officinale Makino. Molecular Biology Reports 45:1919−27 doi: 10.1007/s11033-018-4340-3 |
[8] |
Al-Hussaini Z, Yousif S, Al-Ajeely S. 2015. Effect of different medium on callus induction and regeneration in potato cultivars. International Journal of Current Microbiology and Applied Sciences 4:856−65 |
[9] |
Kumari A, Naidoo D, Baskaran P, Doležal K, Nisler J, et al. 2018. Phenolic and flavonoid production and antimicrobial activity of Gymnosporia buxifolia (L.) Szyszyl cell cultures. Plant Growth Regulation 86:333−38 doi: 10.1007/s10725-018-0432-2 |
[10] |
Bagga S, Venkateswarlu K, Sopory SK. 1987. In vitro regeneration of plants from hypocotyl segments of Amaranthus paniculatus. Plant Cell Reports 6:183−84 doi: 10.1007/BF00268473 |
[11] |
Bennici A, Schiff S. 1997. Micropropagation of Amaranthus (Amaranth). In High-Tech and Micropropagation V, ed. Bajaj YPS. Berlin, Heidelberg: Springer. pp. 20−29. https://doi.org/10.1007/978-3-662-07774-0_2 |
[12] |
Bennici A, Schiff S, Bovelli R. 1992. In vitro culture of species and varieties of four Amaranthus L. species. Euphytica 62:181−86 doi: 10.1007/BF00041752 |
[13] |
Bennici A, Grifoni T, Schiff S, Bovelli R. 1997. Studies on callus growth and morphogenesis in several species and lines of t Amaranthus. Plant Cell, Tissue and Organ Culture 49:29−33 doi: 10.1023/A:1005882322044 |
[14] |
Biswas M, Das SS, Dey S. 2013. Establishment of a stable Amaranthus tricolor callus line for production of food colorant. Food Science and Biotechnology 22:1−8 doi: 10.1007/s10068-013-0041-9 |
[15] |
Comia-Yebron R, Aspuria ET, Bernardo EL. 2017. Callus induction in Amaranthus tricolor and Amaranthus spinosus. Journal of ISSAAS (The International Society for Southeast Asian Agricultural Sciences) 23:12−23 |
[16] |
Kumar GP, Vijila M, Raj P, David R. 2018. Early callus induction and batch kinetics studies for in vitro production of triterpenoids in suspension cultures of Euphorbia hirta Linn. Drug Invention Today 10:3266−75 |
[17] |
El-Shafey N, Sayed M, Ahmed E, Hammouda O, Khodary SE. 2019. Effect of growth regulators on micropropagation, callus induction and callus flavonoid content of Rumex pictus Forssk. Egyptian Journal of Botany 59:293−302 doi: 10.21608/ejbo.2019.4873.1202 |
[18] |
Bota C, Deliu C. 2015. Effect of plant growth regulators on the production of flavonoids by cell suspension cultures of Digitalis lanata. Farmacia 63:716−19 |
[19] |
Liu S, Yang W, Lai Z. 2011. Establishment of in vitro regeneration system of amaranth. Journal of Fujian Agriculture and Forestry University (Natural Science Edition) 40:479−84 doi: 10.13323/j.cnki.j.fafu(nat.sci.).2011.05.017 |
[20] |
Li H, Lin Y, Chen X, Bai Y, Wang C, et al. 2018. Effects of blue light on flavonoid accumulation linked to the expression of miR393, miR394 and miR395 in longan embryogenic calli. PLoS One 13:e0191444 doi: 10.1371/journal.pone.0191444 |
[21] |
Farhadi N, Panahandeh J, Azar AM, Salte SA. 2017. Effects of explant type, growth regulators and light intensity on callus induction and plant regeneration in four ecotypes of Persian shallot (Allium hirtifolium). Scientia Horticulturae 218:80−86 doi: 10.1016/j.scienta.2016.11.056 |
[22] |
Umami N, Akashi R, Gondo T, Ishigaki G, Tanaka H. 2016. Study on callus induction system of 4 genotype of Napiergrass (Pennisetum purpureum). Animal Production 18:131−40 doi: 10.20884/1.jap.2016.18.3.528 |
[23] |
Amin MAM, Hasbullah NA, Azis NA, Daud NF, Rasad FM, et al. 2015. Morphogenesis studies on Amaranthus gangeticus in vitro. International Conference on Agricultural, Ecological and Medical Science, Phuket, Thailand, 2015. Thailand: International Institute of Chemical, Biological & Environmental Engineering (IICBEE). pp. 22−24. http://iicbe.org/upload/5516C0415024.pdf |
[24] |
Chaâbani G, Tabart J, Kevers C, Dommes J, Khan MI, et al. 2015. Effects of 2,4-dichlorophenoxyacetic acid combined to 6-Benzylaminopurine on callus induction, total phenolic and ascorbic acid production, and antioxidant activities in leaf tissue cultures of Crataegus azarolus L. var. aronia. Acta Physiologiae Plantarum 37:16 doi: 10.1007/s11738-014-1769-4 |
[25] |
Akin-Idowu P, Ademoyegun O, Olagunju Y, Aduloju A, Adebo G. 2017. Phytochemical content and antioxidant activity of five grain Amaranth species. American Journal of Food Science and Technology 5:249−55 |