[1] |
Raghothama KG, Karthikeyan AS. 2005. Phosphate acquisition. Plant and Soil 274:37−49 doi: 10.1007/s11104-004-2005-6 |
[2] |
Wissuwa M. 2003. How do plants achieve tolerance to phosphorus deficiency? Small causes with big effects Plant Physiology 133:1947−58 doi: 10.1104/pp.103.029306 |
[3] |
Vance CP, Uhde-Stone C, Allan DL. 2003. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytologist 157:423−47 doi: 10.1046/j.1469-8137.2003.00695.x |
[4] |
Zhu J, Li M, Whelan M. 2018. Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: a review. Science of The Total Environment 612:522−37 doi: 10.1016/j.scitotenv.2017.08.095 |
[5] |
Shen J, Yuan L, Zhang J, Li H, Bai Z, et al. 2011. Phosphorus dynamics: from soil to plant. Plant Physiology 156:997−1005 doi: 10.1104/pp.111.175232 |
[6] |
Menezes-Blackburn D, Giles C, Darch T, George TS, Blackwell M, et al. 2018. Opportunities for mobilizing recalcitrant phosphorus from agricultural soils: a review. Plant and Soil 427:5−16 doi: 10.1007/s11104-017-3362-2 |
[7] |
Mueller ND, Gerber JS, Johnston M, Ray DK, Ramankutty N, et al. 2012. Closing yield gaps through nutrient and water management. Nature 490:254−57 doi: 10.1038/nature11420 |
[8] |
Péret B, Clément M, Nussaume L, Desnos T. 2011. Root developmental adaptation to phosphate starvation: better safe than sorry. Trends in Plant Science 16:442−50 doi: 10.1016/j.tplants.2011.05.006 |
[9] |
Zhang Z, Liao H, Lucas WJ. 2014. Molecular mechanisms underlying phosphate sensing, signaling, and adaptation in plants. Journal of Integrative Plant Biology 56:192−220 doi: 10.1111/jipb.12163 |
[10] |
Chiou TJ, Lin SI. 2011. Signaling network in sensing phosphate availability in plants. Annual Review of Plant Biology 62:185−206 doi: 10.1146/annurev-arplant-042110-103849 |
[11] |
Abel S. 2017. Phosphate scouting by root tips. Current Opinion in Plant Biology 39:168−77 doi: 10.1016/j.pbi.2017.04.016 |
[12] |
Birnbaum K, Shasha DE, Wang JY, Jung JW, Lambert GM, et al. 2003. A gene expression map of the Arabidopsis root. Science 302:1956−60 doi: 10.1126/science.1090022 |
[13] |
Abel S. 2011. Phosphate sensing in root development. Current Opinion in Plant Biology 14:303−9 doi: 10.1016/j.pbi.2011.04.007 |
[14] |
Ticconi CA, Abel S. 2004. Short on phosphate: plant surveillance and countermeasures. Trends in Plant Science 9:548−55 doi: 10.1016/j.tplants.2004.09.003 |
[15] |
Harrison MJ, Dewbre GR, Liu J. 2002. A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. The Plant Cell 14:2413−29 doi: 10.1105/tpc.004861 |
[16] |
Rausch C, Bucher M. 2002. Molecular mechanisms of phosphate transport in plants. Planta 216:23−37 doi: 10.1007/s00425-002-0921-3 |
[17] |
Muchhal US, Pardo JM, Raghothama KG. 1996. Phosphate transporters from the higher plant Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America 93:10519−23 doi: 10.1073/pnas.93.19.10519 |
[18] |
Spain BH, Koo D, Ramakrishnan M, Dzudzor B, Colicelli J. 1995. Truncated forms of a novel yeast protein suppress the lethality of a G protein alpha subunit deficiency by interacting with the β subunit. Journal of Biological Chemistry 270:25435−44 doi: 10.1074/jbc.270.43.25435 |
[19] |
Lenburg ME, O'Shea EK. 1996. Signaling phosphate starvation. Trends in Biochemical Sciences 21:383−87 doi: 10.1016/S0968-0004(96)10048-7 |
[20] |
Battini JL, Rasko JEJ, Miller AD. 1999. A human cell-surface receptor for xenotropic and polytropic murine leukemia viruses: possible role in G protein-coupled signal transduction. Proceedings of the National Academy of Sciences of the United States of America 96:1385−90 doi: 10.1073/pnas.96.4.1385 |
[21] |
Wang Y, Ribot C, Rezzonico E, Poirier Y. 2004. Structure and expression profile of the Arabidopsis PHO1 gene family indicates a broad role in inorganic phosphate homeostasis. Plant Physiology 135:400−11 doi: 10.1104/pp.103.037945 |
[22] |
Secco D, Wang C, Arpat BA, Wang Z, Poirier Y, et al. 2012. The emerging importance of the SPX domain-containing proteins in phosphate homeostasis. New Phytologist 193:842−51 doi: 10.1111/j.1469-8137.2011.04002.x |
[23] |
Gu M, Chen A, Sun S, Xu G. 2016. Complex regulation of plant phosphate transporters and the gap between molecular mechanisms and practical application: what is missing? Molecular Plant 9:396−416 doi: 10.1016/j.molp.2015.12.012 |
[24] |
Rubio V, Linhares F, Solano R, Martín AC, Iglesias J, et al. 2001. A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Genes & Development 15:2122−33 doi: 10.1101/gad.204401 |
[25] |
Devaiah BN, Madhuvanthi R, Karthikeyan AS, Raghothama KG. 2009. Phosphate starvation responses and gibberellic acid biosynthesis are regulated by the MYB62 transcription factor in Arabidopsis. Molecular Plant 2:43−58 doi: 10.1093/mp/ssn081 |
[26] |
Chu CH, Chang LC, Hsu HM, Wei SY, Liu HW, et al. 2011. A highly organized structure mediating nuclear localization of a Myb2 transcription factor in the protozoan parasite Trichomonas vaginalis. Eukaryotic Cell 10:1607−17 doi: 10.1128/EC.05177-11 |
[27] |
Gu M, Zhang J, Li H, Meng D, Li R, et al. 2017. Maintenance of phosphate homeostasis and root development are coordinately regulated by MYB1, an R2R3-type MYB transcription factor in rice. Journal of Experimental Botany 68:3603−15 doi: 10.1093/jxb/erx174 |
[28] |
Devaiah BN, Karthikeyan AS, Raghothama KG. 2007. WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis. Plant Physiology 143:1789−801 doi: 10.1104/pp.106.093971 |
[29] |
Chen ZH, Jenkins GI, Nimmo HG. 2008. Identification of an F-box protein that negatively regulates Pi starvation responses. Plant and Cell Physiology 49:1902−6 doi: 10.1093/pcp/pcn157 |
[30] |
Devaiah BN, Nagarajan VK, Raghothama KG. 2007. Phosphate homeostasis and root development in Arabidopsis are synchronized by the zinc finger transcription factor ZAT6. Plant Physiology 145:147−59 doi: 10.1104/pp.107.101691 |
[31] |
Shen C, Wang S, Zhang S, Xu Y, Qian Q, et al. 2013. OsARF16, a transcription factor, is required for auxin and phosphate starvation response in rice (Oryza sativa L.). Plant, Cell & Environment 36:607−20 doi: 10.1111/pce.12001 |
[32] |
Chiasson DM, Loughlin PC, Mazurkiewicz D, Mohammadidehcheshmeh M, Fedorova EE, et al. 2014. Soybean SAT1 (Symbiotic Ammonium Transporter 1) encodes a bHLH transcription factor involved in nodule growth and NH4+ transport. Proceedings of the National Academy of Sciences of the United States of America 111:4814−19 doi: 10.1073/pnas.1312801111 |
[33] |
Li T, Feng Z, Zhu B, Li M, Li G, et al. 2022. Functional identification of bHLH transcription factor MdSAT1 in the ammonium response. Fruit Research 2:17 doi: 10.48130/frures-2022-0017 |
[34] |
Arnon DI, Stout PR, Sipos F. 1940. Radioactive phosphorus as an indicator of phosphorus absorption of tomato fruits at various stages of development. American Journal of Botany 27:791−98 doi: 10.1002/j.1537-2197.1940.tb10952.x |
[35] |
Bonser AM, Lynch J, Snapp S. 1996. Effect of phosphorus deficiency on growth angle of basal roots in Phaseolus vulgaris. New Phytologist 132:281−88 doi: 10.1111/j.1469-8137.1996.tb01847.x |
[36] |
Dhar N, Caruana J, Erdem I, Subbarao KV, Klosterman SJ, et al. 2020. The Arabidopsis SENESCENCE-ASSOCIATED GENE 13 regulates dark-induced senescence and plays contrasting roles in defense against bacterial and fungal pathogens. Molecular Plant-Microbe Interactions 33:754−66 doi: 10.1094/MPMI-11-19-0329-R |
[37] |
Hörtensteiner S. 2006. Chlorophyll degradation during senescence. Annual Review of Plant Biology 57:55−77 doi: 10.1146/annurev.arplant.57.032905.105212 |
[38] |
Shi J, Zhao B, Zheng S, Zhang X, Wang X, et al. 2021. A phosphate starvation response-centered network regulates mycorrhizal symbiosis. Cell 184:5527−5540.e18 doi: 10.1016/j.cell.2021.09.030 |
[39] |
Alori ET, Glick BR, Babalola OO. 2017. Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Frontiers in Microbiology 8:971 doi: 10.3389/fmicb.2017.00971 |
[40] |
Sun L, Song L, Zhang Y, Zheng Z, Liu D. 2016. Arabidopsis PHL2 and PHR1 act redundantly as the key components of the central regulatory system controlling transcriptional responses to phosphate starvation. Plant Physiology 170:499−514 doi: 10.1104/pp.15.01336 |
[41] |
Yi K, Wu Z, Zhou J, Du L, Guo L, et al. 2005. OsPTF1, a novel transcription factor involved in tolerance to phosphate starvation in rice. Plant Physiology 138:2087−96 doi: 10.1104/pp.105.063115 |
[42] |
Williamson LC, Ribrioux SPCP, Fitter AH, Leyser HMO. 2001. Phosphate availability regulates root system architecture in Arabidopsis. Plant Physiology 126:875−82 doi: 10.1104/pp.126.2.875 |
[43] |
Yang Y, Zheng P, Ren Y, Yao Y, You C, et al. 2021. Apple MdSAT1 encodes a bHLHm1 transcription factor involved in salinity and drought responses. Planta 253:46 doi: 10.1007/s00425-020-03528-6 |
[44] |
Tao S, Zhang Y, Wang X, Xu L, Fang X, et al. 2016. The THO/TREX complex active in miRNA biogenesis negatively regulates root-associated acid phosphatase activity induced by phosphate starvation. Plant Physiology 171:2841−53 doi: 10.1104/pp.16.00680 |
[45] |
Wasaki J, Yamamura T, Shinano T, Osaki M. 2003. Secreted acid phosphatase is expressed in cluster roots of lupin in response to phosphorus deficiency. Plant and Soil 248:129−36 doi: 10.1023/A:1022332320384 |
[46] |
González E, Solano R, Rubio V, Leyva A, Paz-Ares J. 2005. PHOSPHATE TRANSPORTER TRAFFIC FACILITATOR1 is a plant-specific SEC12-related protein that enables the endoplasmic reticulum exit of a high-affinity phosphate transporter in Arabidopsis. The Plant Cell 17:3500−12 doi: 10.1105/tpc.105.036640 |
[47] |
Mazurkiewicz D. 2014 Characterisation of a novel family of eukaryotic ammonium transport proteins. Doctoral Dissertation. The University of Adelaide, Adelaide. |
[48] |
Tsuji H, Taoka KI, Shimamoto K. 2011. Regulation of flowering in rice: two florigen genes, a complex gene network, and natural variation. Current Opinion in Plant Biology 14:45−52 doi: 10.1016/j.pbi.2010.08.016 |
[49] |
Mouradov A, Cremer F, Coupland G. 2002. Control of flowering time: interacting pathways as a basis for diversity. The Plant Cell 14:S111−S130 doi: 10.1105/tpc.001362 |
[50] |
Gan S, Amasino RM. 1997. Making sense of senescence (molecular genetic regulation and manipulation of leaf senescence). Plant Physiology 113:313−19 doi: 10.1104/pp.113.2.313 |
[51] |
Lim PO, Kim HJ, Nam HG. 2007. Leaf senescence. Annual Review of Plant Biology 58:115−36 doi: 10.1146/annurev.arplant.57.032905.105316 |
[52] |
Woo HR, Kim HJ, Nam HG, Lim PO. 2013. Plant leaf senescence and death – regulation by multiple layers of control and implications for aging in general. Journal of Cell Science 126:4823−33 doi: 10.1242/jcs.109116 |
[53] |
Balemi T, Negisho K. 2012. Management of soil phosphorus and plant adaptation mechanisms to phosphorus stress for sustainable crop production: a review. Journal of Soil Science and Plant Nutrition 12:547−62 doi: 10.4067/s0718-95162012005000015 |
[54] |
An J, Li H, Song L, Su L, Liu X, et al. 2016. The molecular cloning and functional characterization of MdMYC2, a bHLH transcription factor in apple. Plant Physiology and Biochemistry 108:24−31 doi: 10.1016/j.plaphy.2016.06.032 |
[55] |
Clough SJ, Bent AF. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal 16:735−43 doi: 10.1046/j.1365-313x.1998.00343.x |
[56] |
Zhou L, Zhang C, Zhang R, Wang G, Li Y, et al. 2019. The SUMO E3 ligase MdSIZ1 targets MdbHLH104 to regulate plasma membrane H+-ATPase activity and iron homeostasis. Plant Physiology 179:88−106 doi: 10.1104/pp.18.00289 |
[57] |
Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCᴛ method. Methods 25:402−8 doi: 10.1006/meth.2001.1262 |
[58] |
Fujii H, Chiou TJ, Lin SI, Aung K, Zhu JK. 2005. A miRNA involved in phosphate-starvation response in Arabidopsis. Current Biology 15:2038−43 doi: 10.1016/j.cub.2005.10.016 |
[59] |
Fitter DW, Martin DJ, Copley MJ, Scotland RW, Langdale JA. 2002. GLK gene pairs regulate chloroplast development in diverse plant species. The Plant Journal 31:713−27 doi: 10.1046/j.1365-313X.2002.01390.x |
[60] |
Sakuraba Y, Kim D, Han SH, Kim SH, Piao W, et al. 2020. Multilayered regulation of membrane-bound ONAC054 is essential for abscisic acid-induced leaf senescence in rice. The Plant Cell 32:630−49 doi: 10.1105/tpc.19.00569 |
[61] |
Lee SH, Sakuraba Y, Lee T, Kim KW, An G, et al. 2015. Mutation of Oryza sativa CORONATINE INSENSITIVE 1b (OsCOI1b) delays leaf senescence. Journal of Integrative Plant Biology 57:562−76 doi: 10.1111/jipb.12276 |
[62] |
Feng Z, Li T, Wang X, Sun W, Zhang T, et al. 2022. Identification and characterization of apple MdNLP7 transcription factor in the nitrate response. Plant Science 316:111158 doi: 10.1016/j.plantsci.2021.111158 |