[1]

Zohary D, Hopf M. 2000. Domestication of plants in the old world : the origin and spread of cultivated plants in west Asia, Europe, and the Nile Valley. Third Edition. New York: Oxford University Press. 316 pp.

[2]

Klee HJ, Tieman DM. 2018. The genetics of fruit flavour preferences. Nature Reviews Genetics 19:347−56

doi: 10.1038/s41576-018-0002-5
[3]

Igarashi M, Hatsuyama Y, Harada T, Fukasawa-Akada T. 2016. Biotechnology and apple breeding in Japan. Breeding Science 66:18−33

doi: 10.1270/jsbbs.66.18
[4]

Ignatov A, Bodishevskaya A. 2011. Malus. In Wild Crop Relatives: Genomic and Breeding Resources: Temperate Fruits, ed. Kole C, xxii, 247 pp. Berlin Heidelberg: Springer-Verlag. pp. 45−64. https://doi.org/10.1007/978-3-642-16057-8_3

[5]

Migicovsky Z, Gardner KM, Richards C, Chao CT, Schwaninger HR, et al. 2021. Genomic consequences of apple improvement. Horticulture Research 8:9

doi: 10.1038/s41438-020-00441-7
[6]

Cornille A, Giraud T, Smulders MJM, Roldán-Ruiz I, Gladieux P. 2014. The domestication and evolutionary ecology of apples. Trends in Genetics 30:57−65

doi: 10.1016/j.tig.2013.10.002
[7]

Brown SK, Maloney KE. 2003. Genetic improvement of apple: breeding, markers, mapping and biotechnology. In Apples: Botany, Production and Uses, eds. Ferree DC, Warrington IJ. UK: CABI Publishing. pp. 31–59. https://doi.org/10.1079/9780851995922.0031

[8]

Bus VGM, Rikkerink EHA, Caffier V, Durel CE, Plummer KM. 2011. Revision of the nomenclature of the differential host-pathogen interactions of Venturia inaequalis and Malus. Annual Review of Phytopathology 49:391−413

doi: 10.1146/annurev-phyto-072910-095339
[9]

Tieman DM, Zeigler M, Schmelz EA, Taylor MG, Bliss P, et al. 2006. Identification of loci affecting flavour volatile emissions in tomato fruits. Journal of Experimental Botany 57:887−96

doi: 10.1093/jxb/erj074
[10]

Cliff MA, Stanich K, Lu R, Hampson CR. 2016. Use of descriptive analysis and preference mapping for early-stage assessment of new and established apples. Journal of the Science of Food and Agriculture 96:2170−83

doi: 10.1002/jsfa.7334
[11]

Mehinagic E, Royer G, Symoneaux R, Jourjon F, Prost C. 2006. Characterization of odor-active volatiles in apples: influence of cultivars and maturity stage. Journal of Agricultural and Food Chemistry 54:2678−87

doi: 10.1021/jf052288n
[12]

Espino-Díaz M, Sepúlveda DR, González-Aguilar G, Olivas GI. 2016. Biochemistry of apple aroma: a review. Food Technology and Biotechnology 54:375−94

doi: 10.17113/ftb.54.04.16.4248
[13]

Mattheis JP, Fellman JK, Chen PM, Patterson ME. 1991. Changes in headspace volatiles during physiological development of Bisbee Delicious apple fruits. Journal of Agriculrual and Food Chemistry 39:1902−6

doi: 10.1021/jf00011a002
[14]

Song J, Bangerth F. 1996. The effect of harvest date on aroma compound production from 'Golden Delicious' apple fruit and relationship to respiration and ethylene production. Postharvest Biology and Technology 8:259−69

doi: 10.1016/0925-5214(96)00020-8
[15]

Defilippi BG, Kader AA, Dandekar AM. 2005. Apple aroma: alcohol acyltransferase, a rate limiting step for ester biosynthesis, is regulated by ethylene. Plant Science 168:1199−210

doi: 10.1016/j.plantsci.2004.12.018
[16]

Fan X, Mattheis JP. 1999. Impact of 1-methylcyclopropene and methyl jasmonate on apple volatile production. Journal of Agricultural and Food Chemistry 47:2847−53

doi: 10.1021/jf990221s
[17]

Mattheis JP, Fan X, Argenta LC. 2005. Interactive responses of gala apple fruit volatile production to controlled atmosphere storage and chemical inhibition of ethylene action. Journal of Agricultural and Food Chemistry 53:4510−16

doi: 10.1021/jf050121o
[18]

Schaffer RJ, Friel EN, Souleyre EJF, Bolitho K, Thodey K, et al. 2007. A genomics approach reveals that aroma production in apple is controlled by ethylene predominantly at the final step in each biosynthetic pathway. Plant Physiology 144:1899−912

doi: 10.1104/pp.106.093765
[19]

Yang X, Song J, Du L, Forney C, Leslie CP, et al. 2016. Ethylene and 1-MCP regulate major volatile biosynthetic pathways in apple fruit. Food Chemistry 194:325−36

doi: 10.1016/j.foodchem.2015.08.018
[20]

Colantonio V, Ferrão LFV, Tieman DM, Bliznyuk N, Sims C, et al. 2022. Metabolomic selection for enhanced fruit flavor. Proceedings of the National Academy of Sciences of the United States of America 119:e2115865119

doi: 10.1073/pnas.2115865119
[21]

Song J, Forney CF. 2008. Flavour volatile production and regulation in fruit. Canadian Journal of Plant Science 88:537−50

doi: 10.4141/CJPS07170
[22]

Sugimoto N, Engelgau P, Jones AD, Song J, Beaudry R. 2021. Citramalate synthase yields a biosynthetic pathway for isoleucine and straight- and branched-chain ester formation in ripening apple fruit. Proceedings of the National Academy of Sciences of the United States of America 118:e2009988118

doi: 10.1073/pnas.2009988118
[23]

Kumar S, Rowan D, Hunt M, Chagné D, Whitworth C, et al. 2015. Genome-wide scans reveal genetic architecture of apple flavour volatiles. Molecular Breeding 35:118

doi: 10.1007/s11032-015-0312-7
[24]

Farneti B, Di Guardo M, Khomenko I, Cappellin L, Biasioli F, et al. 2017. Genome-wide association study unravels the genetic control of the apple volatilome and its interplay with fruit texture. Journal of Experimental Botany 68:1467−78

doi: 10.1093/jxb/erx018
[25]

Larsen B, Migicovsky Z, Jeppesen AA, Gardner KM, Toldam-Andersen TB, et al. 2019. Genome-wide association studies in apple reveal loci for aroma volatiles, sugar composition, and harvest date. The Plant Genome 12:180104

doi: 10.3835/plantgenome2018.12.0104
[26]

Mansurova M, Ebert BE, Blank LM, Ibáñez AJ. 2018. A breath of information: the volatilome. Current Genetics 64:959−64

doi: 10.1007/s00294-017-0800-x
[27]

Qin G, Tao S, Cao Y, Wu J, Zhang H, et al. 2012. Evaluation of the volatile profile of 33 Pyrus ussuriensis cultivars by HS-SPME with GC–MS. Food Chemistry 134:2367−82

doi: 10.1016/j.foodchem.2012.04.053
[28]

Ravi R, Taheri A, Khandekar D, Millas R. 2019. Rapid profiling of soybean aromatic compounds using electronic nose. Biosensors 9:66

doi: 10.3390/bios9020066
[29]

Shi J, Wu H, Xiong M, Chen Y, Chen J, et al. 2020. Comparative analysis of volatile compounds in thirty nine melon cultivars by headspace solid-phase microextraction and gas chromatography-mass spectrometry. Food Chemistry 316:126342

doi: 10.1016/j.foodchem.2020.126342
[30]

Watts S, Migicovsky Z, McClure KA, Yu CHJ, Amyotte B, et al. 2021. Quantifying apple diversity: a phenomic characterization of Canada's Apple Biodiversity Collection. Plants, People, Planet 3:747−60

doi: 10.1002/ppp3.10211
[31]

Watkins CB. 2003. Principles and practices of postharvest handling and stress. In Apples: Botany, Production and Uses, eds Ferree DC, Warrington IJ. Wallingford: CABI. pp. 585–614. https://doi.org/10.1079/9780851995922.0585

[32]

Blanpied GD, Silsby KJ. 1992. Predicting harvest date windows for apples. Technical Report. CCE Publications 142IB221, Cornell Cooperative Extension, Cornell University. https://hdl.handle.net/1813/3299

[33]

Kováts E. 1958. Gas-chromatographische Charakterisierung organischer Verbindungen. Teil 1: Retentionsindices aliphatischer Halogenide, Alkohole, Aldehyde und Ketone. Helvetica Chimica Acta 41:1915−32

doi: 10.1002/hlca.19580410703
[34]

Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, et al. 2011. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379

doi: 10.1371/journal.pone.0019379
[35]

Migicovsky Z, Douglas GM, Myles S. 2022. Genotyping-by-sequencing of Canada's apple biodiversity collection. Frontiers in Genetics 13:934712

doi: 10.3389/fgene.2022.934712
[36]

Daccord N, Celton JM, Linsmith G, Becker C, Choisne N, et al. 2017. High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nature Genetics 49:1099−106

doi: 10.1038/ng.3886
[37]

Zhang L, Hu J, Han X, Li J, Gao Y, et al. 2019. A high-quality apple genome assembly reveals the association of a retrotransposon and red fruit colour. Nature Communications 10:1494

doi: 10.1038/s41467-019-09518-x
[38]

Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, et al. 2015. Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience 4:s13742-015-0047-8

doi: 10.1186/s13742-015-0047-8
[39]

R Core Team. 2021. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/

[40]

Segura V, Vilhjálmsson BJ, Platt A, Korte A, Seren Ü, et al. 2012. An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations. Nature Genetics 44:825−30

doi: 10.1038/ng.2314
[41]

Myles S, Peiffer J, Brown PJ, Ersoz ES, Zhang Z, et al. 2009. Association mapping: critical considerations shift from genotyping to experimental design. The Plant Cell 21:2194−202

doi: 10.1105/tpc.109.068437
[42]

Wang WYS, Barratt BJ, Clayton DG, Todd JA. 2005. Genome-wide association studies: theoretical and practical concerns. Nature Reviews Genetics 6:109−18

doi: 10.1038/nrg1522
[43]

Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M, et al. 2006. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nature Genetics 38:203−8

doi: 10.1038/ng1702
[44]

Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, et al. 2007. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633−35

doi: 10.1093/bioinformatics/btm308
[45]

Devlin B, Roeder K. 1999. Genomic control for association studies. Biometrics 55:997−1004

doi: 10.1111/j.0006-341X.1999.00997.x
[46]

Reich DE, Goldstein DB. 2001. Detecting association in a case-control study while correcting for population stratification. Genetic Epidemiology 20:4−16

doi: 10.1002/1098-2272(200101)20:1<4::AID-GEPI2>3.0.CO;2-T
[47]

Dirinck P, Pooter HD, Schamp N. 1989. Aroma development in ripening fruits. In Flavor chemistry: Trends and development, eds. Teranishi R, Buttery R, Shahidi R. Washington, DC: American Chemical Society. pp. 24–34

[48]

IPCS InChem. 2022. Summary of Evaluationzs Performed by the Joint FAO/WHO Expert Committee on Food Additives. https://inchem.org/documents/jecfa/jeceval/jec_252.htm

[49]

Speciality Produce. 2022. Dukat Apple. https://specialtyproduce.com/produce/Dukat_Apple_18566.php

[50]

Dixon J, Hewett EW. 2000. Factors affecting apple aroma/flavour volatile concentration: a review. New Zealnad Journal of Crop and Horticultural Science 28:155−73

doi: 10.1080/01140671.2000.9514136
[51]

Wills RBH. 1972. Effect of hexyl compounds on soft scald of apples. Phytochemistry 11:1945−46

doi: 10.1016/S0031-9422(00)90156-0
[52]

Xu Y, Ma Y, Howard NP, Chen C, Tong CBS, et al. 2017. Microstructure of soft scald in 'Honeycrisp' apples. Journal of the American Society for Horticultural Science 142:464−69

doi: 10.21273/JASHS04250-17
[53]

Beach SA, Booth NO, Taylor OM. 1905. The Apples of New York. Montana, US: Kessinger Publishing, LLC. pp. 68−71

[54]

Dewulf J, Langenhove HV, Wittmann G. 2002. Analysis of volatile organic compounds using gas chromatography. Trends in Analytical Chemistry 21:637−46

doi: 10.1016/S0165-9936(02)00804-X
[55]

Farneti B, Alarcón AA, Cristescu SM, Costa G, Harren FJM, et al. 2013. Aroma volatile release kinetics of tomato genotypes measured by PTR-MS following artificial chewing. Food Research International 54:1579−88

doi: 10.1016/j.foodres.2013.09.015
[56]

Hashizume M, Gordon MH, Mottram DS. 2007. Light-induced off-flavor development in cloudy apple juice. Journal of Agricultural and Food Chemistry 55:9177−82

[57]

Migicovsky Z, Gardner KM, Money D, Sawler J, Bloom JS, et al. 2016. Genome to phenome mapping in apple using historical data. Plant Genome 9:plantgenome2015.11.0113

doi: 10.3835/plantgenome2015.11.0113
[58]

Kumar R, Tamboli V, Sharma R, Sreelakshmi Y. 2018. NAC-NOR mutations in tomato Penjar accessions attenuate multiple metabolic processes and prolong the fruit shelf life. Food Chemistry 259:234−44

doi: 10.1016/j.foodchem.2018.03.135
[59]

Ríos P, Argyris J, Vegas J, Leida C, Kenigswald M, et al. 2017. ETHQV6.3 is involved in melon climacteric fruit ripening and is encoded by a NAC domain transcription factor. The Plant Journal 91:671−83

doi: 10.1111/tpj.13596
[60]

Shan W, Kuang J, Chen L, Xie H, Peng H, et al. 2012. Molecular characterization of banana NAC transcription factors and their interactions with ethylene signalling component EIL during fruit ripening. Journal of Experimental Botany 63:5171−87

doi: 10.1093/jxb/ers178
[61]

Guo J, Cao K, Deng C, Li Y, Zhu G, et al. 2020. An integrated peach genome structural variation map uncovers genes associated with fruit traits. Genome Biology 21:258

doi: 10.1186/s13059-020-02169-y
[62]

Pirona R, Eduardo I, Pacheco I, Da Silva Linge C, Miculan M et al. 2013. Fine mapping and identification of a candidate gene for a major locus controlling maturity date in peach. BMC Plant Biology 13:166

doi: 10.1186/1471-2229-13-166
[63]

García-Gómez BE, Salazar JA, Dondini L, Martínez-Gómez P, Ruiz D. 2019. Identification of QTLs linked to fruit quality traits in apricot (Prunus armeniaca L.) and biological validation through gene expression analysis using qPCR. Molecular Breeding 39:28

doi: 10.1007/s11032-018-0926-7
[64]

Tigchelaar EC. 1973. A new ripening mutant, non-ripening (nor). Report of the Tomato Genetics Cooperative 35:20

[65]

Jung M, Roth M, Aranzana MJ, Auwerkerken A, Bink M, et al. 2020. The apple REFPOP—a reference population for genomics-assisted breeding in apple. Horticulture Research 7:189

doi: 10.1038/s41438-020-00408-8
[66]

McClure KA, Gardner KM, Douglas GM, Song J, Forney CF, et al. 2018. A genome-wide association study of apple quality and scab resistance. The Plant Genome 11:170075

doi: 10.3835/plantgenome2017.08.0075
[67]

Urrestarazu J, Muranty H, Denancé C, Leforestier D, Ravon E, et al. 2017. Genome-wide association mapping of flowering and ripening periods in apple. Frontiers in Plant Science 8:1923

doi: 10.3389/fpls.2017.01923
[68]

Migicovsky Z, Yeats TH, Watts S, Song J, Forney CF, et al. 2021. Apple ripening is controlled by a NAC transcription factor. Frontiers in Genetics 12:671300

doi: 10.3389/fgene.2021.671300
[69]

Johnston JW, Hewett EW, Hertog MLATM, Harker FR. 2002. Harvest date and fruit size affect postharvest softening of apple fruit. The Journal of Horticulture Science and Biotechnology 77:355−60

doi: 10.1080/14620316.2002.11511505
[70]

Nybom H, Ahmadi-Afzadi M, Sehic J, Hertog M. 2013. DNA marker-assisted evaluation of fruit firmness at harvest and post-harvest fruit softening in a diverse apple germplasm. Tree Genetics & Genomics 9:279−90

doi: 10.1007/s11295-012-0554-z
[71]

Oraguzie NC, Iwanami H, Soejima J, Harada T, Hall A. 2004. Inheritance of the Md-ACS1 gene and its relationship to fruit softening in apple (Malus × domestica Borkh.). Theoretical and Applied Genetics 108:1526−33

doi: 10.1007/s00122-003-1574-8
[72]

Obando-Ulloa JM, Moreno E, García-Mas J, Nicolai B, Lammertyn J, et al. 2008. Climacteric or non-climacteric behavior in melon fruit: 1. Aroma volatiles. Postharvest Biology and Technology 49:27−37

doi: 10.1016/j.postharvbio.2007.11.004
[73]

Song J, Bangerth F. 2003. Fatty acids as precursors for aroma volatile biosynthesis in pre-climacteric and climacteric apple fruit. Postharvest Biology and Technology 30:113−21

doi: 10.1016/S0925-5214(03)00098-X
[74]

Dunemann F, Ulrich D, Malysheva-Otto L, Weber WE, Longhi S, et al. 2012. Functional allelic diversity of the apple alcohol acyl-transferase gene MdAAT1 associated with fruit ester volatile contents in apple cultivars. Molecular Breeding 29:609−25

doi: 10.1007/s11032-011-9577-7
[75]

Souleyre EJF, Greenwood DR, Friel EN, Karunairetnam S, Newcomb RD. 2005. An alcohol acyl transferase from apple (cv. Royal Gala), MpAAT1, produces esters involved in apple fruit flavor. The FEBS Journal 272:3132−44

doi: 10.1111/j.1742-4658.2005.04732.x
[76]

Souleyre EJF, Chagné D, Chen X, Tomes S, Turner RM, et al. 2014. The AAT1 locus is critical for the biosynthesis of esters contributing to 'ripe apple' flavour in 'Royal Gala' and 'Granny Smith' apples. The Plant Journal 78:903−15

doi: 10.1111/tpj.12518
[77]

Souleyre EJF, Nieuwenhuizen NJ, Wang MY, Winz RA, Matich AJ, et al. 2022. Alcohol acyl transferase genes at a high-flavor intensity locus contribute to ester biosynthesis in kiwifruit. Plant Physiology 190:1100−16

doi: 10.1093/plphys/kiac316
[78]

Ulrich D, Dunemann F. 2014. Towards the development of molecular markers for apple volatiles. Flavour Science671−77

doi: 10.1016/B978-0-12-398549-1.00123-9
[79]

U. S. Apple Association. 2023. Apple Varieties. https://usapple.org/apple-varieties