[1]

Editorial Committee of Flora of China. 1979. Flora Republicae Popularis Sinicae 200. China: Chinese Academy of Sciences.

[2]

Editorial Committee of Chinese Pharmacopoeia CP. 2020. Pharmacopoeia of the People's Republic of China. Vol. 1. Beijing: China Medical Science and Technology Press. pp. 123–25.

[3]

Li M, Gu D, Liu Y, Hsu P. 1997. Relationship between occurrence of bulbils and chromosome number and ploidy in Pinellia (Araceae). Journal of Systematics Evolution 35:208

[4]

Hou D, Wang C, Wang L, Ma Z. 2006. Observation of the chromosomes of Pinellia ternata of Zhaotong. Journal of Anhui Agricultural Sciences 34:1384−86

doi: 10.13989/j.cnki.0517-6611.2006.07.056
[5]

Mao R, He Z. 2022. Pinellia ternata (Thunb.) Breit: A review of its germplasm resources, genetic diversity and active components. Journal of Ethnopharmacology 263:113252

doi: 10.1016/j.jep.2020.113252
[6]

Bai J, Qi J, Yang L, Wang Z, Wang R, et al. 2022. A comprehensive review on ethnopharmacological, phytochemical, pharmacological and toxicological evaluation, and quality control of Pinellia ternata (Thunb. ) Breit. Journal of Ethnopharmacology 298:115650

doi: 10.1016/j.jep.2022.115650
[7]

Peng W, Li N, Jiang E, Zhang C, Huang Y, et al. 2022. A review of traditional and current processing methods used to decrease the toxicity of the rhizome of Pinellia ternata in traditional Chinese medicine. Journal of Ethnopharmacology 299:115696

doi: 10.1016/j.jep.2022.115696
[8]

Lu H, Xue T, Zhang A, Sheng W, Zhu Y, et al. 2013. Construction of an SSH library of Pinellia ternata under heat stress, and expression analysis of four transcripts. Plant Molecular Biology Reporter 31:185−94

doi: 10.1007/s11105-012-0488-5
[9]

Xue J, Zhang A, Yang J, Chang L, Huang Y. 2007. Change of endogenous hormone around sprout tumble of Pinellia ternata under high temperature stress. China Journal of Chinese Materia Medica 32:2489−91

[10]

Gui Y, Jiang CH, Cheng X, Wang C, Zhou DM, et al. 2022. Screening and field application of biocontrol strains against soft rot of Pinellia ternata (Thunb. ) Brei. Modern Chinese Medicine 24(10):1952−61

doi: 10.13313/j.issn.1673-4890.20211026002
[11]

Editorial Committee of Flora of China CAS. 2010. Flora of China (Zhongguo Zhiwu Zhi). vol. 23. Beijing: Science Press. pp. 39−43

[12]

Su J, Shang Z. 1981. Revised Materia Medica. He fei: Anhui Science and Technology Press. 264 pp.

[13]

Ou Z, Wang Z, Chen Y, Shen Z, Chu A, et al. 2016. Niche characteristics of main herbaceous populations in habitat of Pinella yaoluopingensis. Journal of South China Agricultural University 37:82−89

[14]

Wu P, Sun X, Sun F. 1955. Sheng Nong's herbal classic. Shanghai: Commercial Press. 56 pp.

[15]

Sun S. 2004. Qianjin Yi Fang. Beijing: Huaxia Publishing House. pp. 552−53.

[16]

Wu Q. 1963. Materia Medica in Qing dynasty. Beijing: People's Medical Publishing House. 603 pp.

[17]

Liu W. 2005. Collected Essentials of Species of Materia Medica. Shanghai: Shanghai Science and Technology Press. 434 pp.

[18]

Tang S. 1957. Emergency herbal medicine for historical evidence. Beijing: People's Medical Publishing House. 245 pp.

[19]

Badfar-Chaleshtori S, Shiran B, Kohgard M, Mommeni H, Hafizi A, et al. 2012. Assessment of genetic diversity and structure of Imperial Crown (Fritillaria imperialis L.) populations in the Zagros region of Iran using AFLP, ISSR and RAPD markers and implications for its conservation. Biochemical Systematics and Ecology 42:35−48

doi: 10.1016/j.bse.2011.12.027
[20]

Zhang J, Guo Q, Zheng D. 2013. Genetic diversity analysis of Pinellia ternata based on SRAP and TRAP markers. Biochemical Systematics Ecology 50:258−65

doi: 10.1016/j.bse.2013.03.052
[21]

Wang S, Zhang Z, Jiang N, Zhang G, Sha B, et al. 2014. SSR information in transcriptome of Pinellia ternata. Journal of Chinese Medicinal Materials 37:1566−69

[22]

Liu L, Yang Z, Wei S, Ouyang Z, Wu K, et al. 2012. ISSR and SRAP markers in the genetic relationship analysis among Pinellia in China. Journal of Medicinal Plants Research 6:3596−602

doi: 10.5897/jmpr12.371
[23]

Wang A, Ji X, Wen X. 2012. Genetic diversity of 16 wild Pinellia ternate germplasms. Guizhou Agricultural Sciences 1:15−18

doi: 10.3969/j.issn.1001-3601.2012.01.006
[24]

Liu B, Chen S, Yang Y, Wang L, Hou D. 2014. RAPD analysis on genetic diversity of Pinellia ternata (Thunb.) Breit in different populations. Medicinal Plant 5:7

[25]

Chung HS, Um JY, Kim MS, Hong SH, Kim SM, et al. 2002. Determination of the site of origin of Pinellia ternata roots based on RAPD analysis and PCR-RFLP. Hereditas 136:126−29

doi: 10.1034/j.1601-5223.2002.1360206.x
[26]

Pan F , Mo Z, Shi T, Wu M, Guan P, et al. 2021. Genetic diversity and genetic structure analysis of Pinellia ternata (Thunb.) Breit populations. Molecular Plant Breeding 19(24):8347−52

doi: 10.13271/j.mpb.019.008347
[27]

Yi T, Li H, Li D. 2002. The course of change and development of the classification systems of the Araceae. Wuhan Botanical Research 20:48−61

[28]

Pan H. 2010. Studies on genetic diversity of Pinellia ternata, resources from Sichuan Province. Thesis. Sichuan Agricultural University, Sichuan, China. 14 pp.

[29]

Cui N, Chen W, Li X, Wang P. 2021. Adaptive evolution and phylogenetic analyses in Pinellia based on chloroplast genomes. Research Square Preprint

doi: 10.21203/rs.3.rs-985139/v1
[30]

Sattler MC, Carvalho CR, Clarindo WR. 2016. The polyploidy and its key role in plant breeding. Planta 243:281−96

doi: 10.1007/s00425-015-2450-x
[31]

He L, Ding Z, Jiang F, Jin B, Li W, et al. 2012. Induction and identification of hexadecaploid of Pinellia ternate. Euphytica 186:479−88

doi: 10.1007/s10681-012-0642-z
[32]

Jia M, Guo Q, Gao W, Zhang B, Chen J, et al. 2013. Species characteristics for sixteen-ploid Pinellia ternata (Thunb.) Breit. Chinese Journal of Bioprocess Engineering 11:59−63

doi: 10.3969/j.issn.1672-3678.2013.04.011
[33]

Lu J, Liu JN, Sarsaiya S, Duns GJ, Han J, et al. 2020. Phenotypic and Transcriptomic analysis of two Pinellia ternata varieties T2 line and T2 Plus line. Scientific Reports 10:4614

doi: 10.1038/s41598-020-61512-2
[34]

Pan B. 1998. Ecological observation of P. ternata bud. Journal of Chinese Traditional Medicine 23:526−27

[35]

Xie H, Xie X, Li J. 2005. Virus damage to Pinellia ternata and its rapid-proliferation technique for virus-free seedlings. Chinese Traditional Herbal Drugs 36:1697−700

[36]

Peng Z, Luo C, Cai P, Mao Z, Kang C, et al. 2007. Rapid propagation of the medicinal plant Pinellia ternata byin vitro leaves culture. Bulgarian Journal of Agricultural Science 13:1−6

[37]

Xu T, Zhang L, Sun X, Tang K. 2005. Efficient in vitro plant regeneration of Pinellia ternata (Thunb) Breit. Acta Biologica Cracoviensia Series Botanica 2:27−32

[38]

Wang J, Wang Q, Wang J, Lu Y, Xiao X, et al. 2009. Effect of different plant growth regulators on micro-tuber induction and plant regeneration of Pinellia ternate (Thunb) Briet. Physiology & Molecular Biology of Plants 15:359−65

doi: 10.1007/s12298-009-0040-8
[39]

Jie EY, Ryu YB, Choi SA, Ahn MS, Liu JR, et al. 2015. Mass propagation of microtubers from suspension cultures of Pinellia ternata cells and quantitative analysis of succinic acid in Pinellia tubers. Plant Biotechnology Reports 9:331−38

doi: 10.1007/s11816-015-0369-0
[40]

Liu Y, Liang Z, Zhang Y. 2010. Induction and in vitro alkaloid yield of calluses and protocorm-like bodies (PLBs) from Pinellia ternata: alkaloid yield of in vitro tissues from Pinellia ternata. In Vitro Cellular Developmental Biology - Plant 46:239−45

doi: 10.1007/s11627-009-9268-9
[41]

Cerqueira-Silva CBM, Jesus ON, Santos ES, Corrêa RX, Souza AP. 2014. Genetic breeding and diversity of the genus Passiflora: progress and perspectives in molecular and genetic studies. International Journal of Molecular Sciences 15:14122−52

doi: 10.3390/ijms150814122
[42]

Fejér J, Gruľová D, Salamon I. 2014. Clonal breeding of peppermint (Mentha × Piperita) with high content of menthol. Acta Horticulturae 1023:173−78

doi: 10.17660/actahortic.2014.1023.25
[43]

Sugiharto S, Widiastuti E, Isroli I, Wahyuni HI, Yudiarti T. 2020. Effect of a fermented mixture of papaya leaf and seed meal on production traits and intestinal ecology of the Indonesian indigenous crossbred chickens. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis 68:707−18

doi: 10.11118/actaun202068040707
[44]

Su J, Jiang J, Zhang F, Liu Y, Ding L, et al. 2019. Current achievements and future prospects in the genetic breeding of chrysanthemum: a review. Horticulture Research 6:109

doi: 10.1038/s41438-019-0193-8
[45]

Sun D, Ma J, Yin G, Jiang X, Chen Y, et al. 2013. Preliminary study on interspecific hybridization breeding of konjac resources in Yunnan. Southwest China Journal of Agricultural Sciences 26:1992−95

doi: 10.16213/j.cnki.scjas.2013.05.066
[46]

Wang K, Xiao Y, Luo Q, Hu L. 2012. Study on pollen viability and hybridization of Pinellia ternate. Acta Agriculturae Jiangxi 24:53−5

[47]

Luo Q, Xiao Y, Wang K, Yang L. 2013. Analysis on the genetic control of heterosis for guanosine and organic acid contents in tuber of Pinellia ternata by using of random amplified polymorphic DNA (RAPD) makers. Journal of Medicinal Plants Research 7:857−62

[48]

Fan H, He Q, Dong Y, Xu W, Lou Y, et al. 2022. Selection of suitable candidate genes for mRNA expression normalization in bulbil development of Pinellia ternata. Scientific Reports 12:8849

doi: 10.1038/s41598-022-12782-5
[49]

Ma G, Zhang M, Xu J, Zhou W, Cao L. 2020. Transcriptomic analysis of short-term heat stress response in Pinellia ternata provided novel insights into the improved thermotolerance by spermidine and melatonin. Ecotoxicology and Environmental Safety 202:110877

doi: 10.1016/j.ecoenv.2020.110877
[50]

Tian C, Zhang Z, Huang Y, Xu J, Liu Z, et al. 2022. Functional characterization of the Pinellia ternata cytoplasmic class II small heat shock protein gene PtsHSP17.2 via promoter analysis and overexpression in tobacco. Plant Physiology and Biochemistry 177:1−9

doi: 10.1016/j.plaphy.2022.02.017
[51]

Zhang H, Zhang Z, Xiong Y, Shi J, Chen C, et al. 2021. Stearic acid desaturase gene negatively regulates the thermotolerance of Pinellia ternata by modifying the saturated levels of fatty acids. Industrial Crops and Products 166

doi: 10.1016/j.indcrop.2021.113490
[52]

Hu XF, Ying FX, He YB, Gao YY, Chen HM, et al. 2008. Characterization of Pectobacterium carotovorum subsp. carotovorum causing soft-rot disease on Pinellia ternata in China. European Journal of Plant Pathology 120:305−10

doi: 10.1007/s10658-007-9219-4
[53]

Dong F, Zhang XH, Li YH, Wang JF, Zhang SS, et al. 2010. Characterization of the endophytic antagonist pY11T-3-1 against bacterial soft rot of Pinellia ternata. Letters in Applied Microbiology 50(6):611−17

doi: 10.1111/j.1472-765X.2010.02841.x
[54]

Shu F, Han J, Ndayambaje JP, Jia Q, Sarsaiya S, et al. 2021. Transcriptomic analysis of Pinellia ternata (Thunb. ) Breit T2 plus line provides insights in host responses resist Pectobacterium carotovorum infection. Bioengineered 12:1173−88

doi: 10.1080/21655979.2021.1905325
[55]

Talaat NB, Shawky BT. 2012. 24-Epibrassinolide ameliorates the saline stress and improves the productivity of wheat (Triticum aestivum L). Environmental Experimental Botany 82:80−88

doi: 10.1016/j.envexpbot.2012.03.009
[56]

Gruszka D. 2019. Genetic and molecular bases of brassinosteroid metabolism and interactions with other phytohormones. Brassinosteroids: Plant Growth and Development, eds. Hayat S, Yusuf M, Bhardwaj R, Bajguz A. Singapore: Springer. pp. 219−49. https://doi.org/10.1007/978-981-13-6058-9_8

[57]

Guo C, Shen Y, Li M, Chen Y, Xu X, et al. 2022. Principal component analysis to assess the changes of yield and quality of two Pinellia ternata cultivars after brassinolide treatments. Journal of Plant Growth Regulation 41:2185−97

doi: 10.1007/s00344-021-10434-y
[58]

Guo C, Li J, Li M, Xu X, Chen Y, et al. 2021. Regulation Mechanism of Exogenous Brassinolide on Bulbil Formation and Development in Pinellia ternata. Frontiers in Plant Science 12:809769

doi: 10.3389/fpls.2021.809769
[59]

Guo C, Zhang Y, Wu D, Wang M, Du Y, et al. 2022. Principal component analysis to assess the changes of yield and quality in Pinellia ternata at different stages after brassinolide treatments. International Journal of Molecular Sciences 23:15375

doi: 10.3390/ijms232315375
[60]

Ding X, Song Q, Hu W. 2021. Research progress of the wild medicinal plant, Pinellia ternata. Journal of Clinical Nursing Research 5:12−16

doi: 10.26689/jcnr.v5i4.2246
[61]

Zhi-wei Zhou, Yanran Li, Li Hy. 2022. Study on Current Situation of Import and Export Trade and Industrialization Development of Pinelliae Rhizoma. Journal of Chinese Medicinal Materials 45(5):1033−40

doi: 10.13863/j.issn1001-4454.2022.05.001
[62]

Jing Y, Lai Y, Chen H, Li M, Zhou J, et al. 2019. Study on the identification of Pinelliae rhizoma and Pinelliae pedatisectae rhizoma based on the characteristic component triglochinic acid. RSC Advances 9:11774−80

doi: 10.1039/C9RA01626K
[63]

Zhang Y, Song M, Sun W, Xiang L, MA X, et al. 2014. Identification of Pinelliae Rhizoma and its adulterants based on ITS2 sequence. World Science and Technology - Modernization of Traditional Chinese Medicine. pp. 1725−29

[64]

Chen B, Su C, Teng J, Sheng W, Xue T, et al. 2023. Transcriptome profiling reveals differential gene expression during the process of microtuber formation in Pinellia ternata. International Journal of Molecular Science 24(14):11604

doi: 10.3390/ijms241411604
[65]

Wagner ND, He L, Hörandl E. 2021. The evolutionary history, diversity, and ecology of willows (Salix L.) in the European Alps. Diversity 13:146

doi: 10.3390/d13040146
[66]

Yuan J, He Z, Yuan X, Jiang X, Sun X, et al. 2010. Speciation of polyploid Cyprinidae fish of common carp, crucian carp, and silver crucian carp derived from duplicated Hox genes. Journal of Experimental Zoology Part B: Molecular Developmental Evolution, 314:445−56

doi: 10.1002/jez.b.21350
[67]

Zhang H, Sun Y, Zhu S, He W, Zhou L, et al. 2022. Localization of 5S rDNA analysis of homologous pairing in tetraploid hybrids of red crucian carp (♀) × common carp (♂). Journal of the World Aquaculture Society 53:714−23

doi: 10.1111/jwas.12851