[1]

Li Q, Li R, He F, Yang Z, Yu J. 2022. Growth and physiological effects of chitosan on heat tolerance in creeping bentgrass (Agrostis stolonifera). Grass Research 2:6

doi: 10.48130/GR-2022-0006
[2]

Zhou Y, Yin M, Liu F. 2022. First report of summer patch of creeping bentgrass caused by Magnaporthiopsis poae in southeastern China. Plant Disease 106:1527

doi: 10.1094/PDIS-09-21-1892-PDN
[3]

Kaminski JE, Dernoeden PH, O'Neill NR, Momen B. 2002. Reactivation of bentgrass dead spot and growth, pseudothecia production, and ascospore germination of Ophiosphaerella agrostis. Plant Disease 86:1290−96

doi: 10.1094/PDIS.2002.86.12.1290
[4]

Shi Y, Zhang J, Li H, Li M, Huang B. 2018. Butanediol-enhanced heat tolerance in Agrostis stolonifera in association with alteration in stress-related gene expression and metabolic profiles. Environmental and Experimental Botany 153:209−17

doi: 10.1016/j.envexpbot.2018.06.002
[5]

Landschoot PJ, Jackson N. 1989. Magnaporthe poae sp. nov., a hyphopodiate fungus with a Phialophora anamorph from grass roots in the United States. Mycological Research 93:59−62

doi: 10.1016/S0953-7562(89)80137-6
[6]

Hu J, Liu Q, Liu M, Zhang F, Xiao Y, et al. 2017. First report of summer patch of creeping bentgrass caused by Magnaporthe poae in China. Plant Disease 101:634

doi: 10.1094/pdis-09-16-1385-pdn
[7]

Kerns JP, Tredway LP. 2007. First report of pythium root dysfunction of creeping bentgrass caused by Pythium volutum in North Carolina. Plant Disease 91(5):632

doi: 10.1094/PDIS-91-5-0632C
[8]

Thomas SL, Bonello P, Lipps PE, Boehm MJ. 2006. Avenacin production in creeping bentgrass (Agrostis stolonifera) and its influence on the host range of Gaeumannomyces graminis. Plant Disease 90:33−38

doi: 10.1094/PD-90-0033
[9]

Tredway LP. 2006. Genetic relationships among Magnaporthe poae isolates from turfgrass hosts and relative susceptibility of 'Penncross' and 'Penn A-4' creeping bentgrass. Plant Disease 90:1531−38

doi: 10.1094/PD-90-1531
[10]

Wetzel HC, Dernoeden PH, Millner PD. 1996. Identification of darkly pigmented fungi associated with turfgrass roots by mycelial characteristics and RAPD-PCR. Plant Disease 80:359−64

doi: 10.1094/PD-80-0359
[11]

Vines PL, Hoffmann FG, Meyer F, Allen TW, Tomaso-Peterson M. 2021. Gaeumannomyces nanograminis, sp. nov., a hyphopodiate fungus identified from diseased roots of ultradwarf bermudagrass in the United States. Mycologia 113:938−48

doi: 10.1080/00275514.2021.1911192
[12]

Câmara MPS, O'neill N, van Berkum P, Dernoeden PH, Palm ME. 2000. Ophiosphaerella agrostis sp. nov. and its relationship to other species of Ophiosphaerella. Mycologica 92:317−25

doi: 10.1080/00275514.2000.12061162
[13]

Luo J, Zhang N. 2013. Magnaporthiopsis, a new genus in Magnaporthaceae (Ascomycota). Mycologia 105:1019−29

doi: 10.3852/12-359
[14]

Vines PL. 2015. Evaluation of ultradwarf bermudagrass cultural management practices and identification, characterization, and pathogenicity of ectotrophic root-infecting fungi associated with summer decline of ultradwarf bermudagrass putting greens. Master of Science Thesis. Mississippi State University, Mississippi. https://scholarsjunction.msstate.edu/td/2079

[15]

Stephens CM, Gannon TW, Cubeta MA, Sit TL, Kerns JP. 2022. Characterization and aggressiveness of take-all root rot pathogens isolated from symptomatic bermudagrass putting greens. Pytopathology 112:811−19

doi: 10.1094/PHYTO-05-21-0215-R
[16]

Wong PTW, Dong C, Stirling AM, Dickinson ML. 2012. Two new Magnaporthe species pathogenic to warm-season turfgrasses in Australia. Australasian Plant Pathology 41:321−29

doi: 10.1007/s13313-012-0118-6
[17]

Wong PTW, Dong C, Martin PM, Sharp PJ. 2015. Fairway patch - a serious emerging disease of couch (syn. bermudagrass) [Cynodon dactylon] and kikuyu (Pennisetum clandestinum) turf in Australia caused by Phialocephala bamuru P. T. W. Wong & C. Dong sp. nov. Australasian Plant Pathology 44:545−55

doi: 10.1007/s13313-015-0369-0
[18]

Hernández-Restrepo M, Groenewald JZ, Elliott ML, Canning G, McMillan VE, et al. 2016. Take-all or nothing. Studies in Mycology 83:19−48

doi: 10.1016/j.simyco.2016.06.002
[19]

Wong PTW, Tan YP, Weese TL, Shivas RG. 2022. Magnaporthiopsis species associated with patch diseases of turfgrasses in Australia. Mycosphere 13:602−11

doi: 10.5943/mycosphere/13/1/5
[20]

Zhang N, Zhao S, Shen Q. 2011. A six-gene phylogeny reveals the evolution of mode of infection in the rice blast fungus and allied species. Mycologia 103:1267−76

doi: 10.3852/11-022
[21]

Hu J, Zhou Y, Geng J, Dai Y, Ren H, et al. 2019. A new dollar spot disease of turfgrass caused by Clarireedia paspali. Mycological Progress 18:1423−35

doi: 10.1007/s11557-019-01526-x
[22]

Hulvey J, Popko JT Jr, Sang H, Berg A, Jung G. 2012. Overexpression of ShCYP51B and ShatrD in Sclerotinia homoeocarpa isolates exhibiting practical field resistance to a demethylation inhibitor fungicide. Applied and Environmental Microbiology 78:6674−82

doi: 10.1128/AEM.00417-12
[23]

Zhang D, Gao F, Jakovlić I, Zou H, Zhang J, et al. 2020. PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Molecular Ecology Resources 20:348−55

doi: 10.1111/1755-0998.13096
[24]

Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30:772−80

doi: 10.1093/molbev/mst010
[25]

Farris JS, Källersjö M, Kluge AG, Bult C. 1994. Testing significance of incongruence. Cladistics 10:315−19

doi: 10.1111/j.1096-0031.1994.tb00181.x
[26]

Swofford DL. 2002. PAUP*: Phylogenetic analysis using parsimony (*and other methods). Version 4b10. Sunderland, Massachusetts: Sinauer Associates.

[27]

Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14:587−89

doi: 10.1038/nmeth.4285
[28]

Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, et al. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61:539−42

doi: 10.1093/sysbio/sys029
[29]

Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32:268−74

doi: 10.1093/molbev/msu300
[30]

Minh BQ, Nguyen MAT, von Haeseler A. 2013. Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution 30:1188−95

doi: 10.1093/molbev/mst024
[31]

Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, et al. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59:307−21

doi: 10.1093/sysbio/syq010
[32]

Letunic I, Bork P. 2021. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Research 49:293−96

doi: 10.1093/nar/gkab301
[33]

Rayner RW. 1970. A mycological colour chart. Kew, UK: Commonwealth Mycological Institute. 34 pp.

[34]

Bruen TC, Philippe H, Bryant D. 2006. A simple and robust statistical test for detecting the presence of recombination. Genetics 172:2665−81

doi: 10.1534/genetics.105.048975
[35]

Huson DH, Bryant D. 2006. Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution 23:254−67

doi: 10.1093/molbev/msj030
[36]

Dress AWM, Huson DH. 2004. Constructing splits graphs. IEEE/ACM Transactions on Computational Biology and Bioinformatics 1:109−15

doi: 10.1109/TCBB.2004.27
[37]

Cunningham CW. 1997. Can three incongruence tests predict when data should be combined? Molecular Biology and Evolution 14:733−40

doi: 10.1093/oxfordjournals.molbev.a025813
[38]

Freeman J, Ward E. 2004. Gaeumannomyces graminis, the take-all fungus and its relatives. Molecular Plant Pathology 5:235−52

doi: 10.1111/j.1364-3703.2004.00226.x
[39]

Hornby D, Slope DB, Gutteridge RJ, Sivanesan A. 1977. Gaeumannomyces cylindrosporus, a new ascomycete from cereal roots. Transactions of the British Mycological Society 69:21−25

doi: 10.1016/S0007-1536(77)80110-1