[1] |
Li Q, Li R, He F, Yang Z, Yu J. 2022. Growth and physiological effects of chitosan on heat tolerance in creeping bentgrass (Agrostis stolonifera). Grass Research 2:6 doi: 10.48130/GR-2022-0006 |
[2] |
Zhou Y, Yin M, Liu F. 2022. First report of summer patch of creeping bentgrass caused by Magnaporthiopsis poae in southeastern China. Plant Disease 106:1527 doi: 10.1094/PDIS-09-21-1892-PDN |
[3] |
Kaminski JE, Dernoeden PH, O'Neill NR, Momen B. 2002. Reactivation of bentgrass dead spot and growth, pseudothecia production, and ascospore germination of Ophiosphaerella agrostis. Plant Disease 86:1290−96 doi: 10.1094/PDIS.2002.86.12.1290 |
[4] |
Shi Y, Zhang J, Li H, Li M, Huang B. 2018. Butanediol-enhanced heat tolerance in Agrostis stolonifera in association with alteration in stress-related gene expression and metabolic profiles. Environmental and Experimental Botany 153:209−17 doi: 10.1016/j.envexpbot.2018.06.002 |
[5] |
Landschoot PJ, Jackson N. 1989. Magnaporthe poae sp. nov., a hyphopodiate fungus with a Phialophora anamorph from grass roots in the United States. Mycological Research 93:59−62 doi: 10.1016/S0953-7562(89)80137-6 |
[6] |
Hu J, Liu Q, Liu M, Zhang F, Xiao Y, et al. 2017. First report of summer patch of creeping bentgrass caused by Magnaporthe poae in China. Plant Disease 101:634 doi: 10.1094/pdis-09-16-1385-pdn |
[7] |
Kerns JP, Tredway LP. 2007. First report of pythium root dysfunction of creeping bentgrass caused by Pythium volutum in North Carolina. Plant Disease 91(5):632 doi: 10.1094/PDIS-91-5-0632C |
[8] |
Thomas SL, Bonello P, Lipps PE, Boehm MJ. 2006. Avenacin production in creeping bentgrass (Agrostis stolonifera) and its influence on the host range of Gaeumannomyces graminis. Plant Disease 90:33−38 doi: 10.1094/PD-90-0033 |
[9] |
Tredway LP. 2006. Genetic relationships among Magnaporthe poae isolates from turfgrass hosts and relative susceptibility of 'Penncross' and 'Penn A-4' creeping bentgrass. Plant Disease 90:1531−38 doi: 10.1094/PD-90-1531 |
[10] |
Wetzel HC, Dernoeden PH, Millner PD. 1996. Identification of darkly pigmented fungi associated with turfgrass roots by mycelial characteristics and RAPD-PCR. Plant Disease 80:359−64 doi: 10.1094/PD-80-0359 |
[11] |
Vines PL, Hoffmann FG, Meyer F, Allen TW, Tomaso-Peterson M. 2021. Gaeumannomyces nanograminis, sp. nov., a hyphopodiate fungus identified from diseased roots of ultradwarf bermudagrass in the United States. Mycologia 113:938−48 doi: 10.1080/00275514.2021.1911192 |
[12] |
Câmara MPS, O'neill N, van Berkum P, Dernoeden PH, Palm ME. 2000. Ophiosphaerella agrostis sp. nov. and its relationship to other species of Ophiosphaerella. Mycologica 92:317−25 doi: 10.1080/00275514.2000.12061162 |
[13] |
Luo J, Zhang N. 2013. Magnaporthiopsis, a new genus in Magnaporthaceae (Ascomycota). Mycologia 105:1019−29 doi: 10.3852/12-359 |
[14] |
Vines PL. 2015. Evaluation of ultradwarf bermudagrass cultural management practices and identification, characterization, and pathogenicity of ectotrophic root-infecting fungi associated with summer decline of ultradwarf bermudagrass putting greens. Master of Science Thesis. Mississippi State University, Mississippi. https://scholarsjunction.msstate.edu/td/2079 |
[15] |
Stephens CM, Gannon TW, Cubeta MA, Sit TL, Kerns JP. 2022. Characterization and aggressiveness of take-all root rot pathogens isolated from symptomatic bermudagrass putting greens. Pytopathology 112:811−19 doi: 10.1094/PHYTO-05-21-0215-R |
[16] |
Wong PTW, Dong C, Stirling AM, Dickinson ML. 2012. Two new Magnaporthe species pathogenic to warm-season turfgrasses in Australia. Australasian Plant Pathology 41:321−29 doi: 10.1007/s13313-012-0118-6 |
[17] |
Wong PTW, Dong C, Martin PM, Sharp PJ. 2015. Fairway patch - a serious emerging disease of couch (syn. bermudagrass) [Cynodon dactylon] and kikuyu (Pennisetum clandestinum) turf in Australia caused by Phialocephala bamuru P. T. W. Wong & C. Dong sp. nov. Australasian Plant Pathology 44:545−55 doi: 10.1007/s13313-015-0369-0 |
[18] |
Hernández-Restrepo M, Groenewald JZ, Elliott ML, Canning G, McMillan VE, et al. 2016. Take-all or nothing. Studies in Mycology 83:19−48 doi: 10.1016/j.simyco.2016.06.002 |
[19] |
Wong PTW, Tan YP, Weese TL, Shivas RG. 2022. Magnaporthiopsis species associated with patch diseases of turfgrasses in Australia. Mycosphere 13:602−11 doi: 10.5943/mycosphere/13/1/5 |
[20] |
Zhang N, Zhao S, Shen Q. 2011. A six-gene phylogeny reveals the evolution of mode of infection in the rice blast fungus and allied species. Mycologia 103:1267−76 doi: 10.3852/11-022 |
[21] |
Hu J, Zhou Y, Geng J, Dai Y, Ren H, et al. 2019. A new dollar spot disease of turfgrass caused by Clarireedia paspali. Mycological Progress 18:1423−35 doi: 10.1007/s11557-019-01526-x |
[22] |
Hulvey J, Popko JT Jr, Sang H, Berg A, Jung G. 2012. Overexpression of ShCYP51B and ShatrD in Sclerotinia homoeocarpa isolates exhibiting practical field resistance to a demethylation inhibitor fungicide. Applied and Environmental Microbiology 78:6674−82 doi: 10.1128/AEM.00417-12 |
[23] |
Zhang D, Gao F, Jakovlić I, Zou H, Zhang J, et al. 2020. PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Molecular Ecology Resources 20:348−55 doi: 10.1111/1755-0998.13096 |
[24] |
Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30:772−80 doi: 10.1093/molbev/mst010 |
[25] |
Farris JS, Källersjö M, Kluge AG, Bult C. 1994. Testing significance of incongruence. Cladistics 10:315−19 doi: 10.1111/j.1096-0031.1994.tb00181.x |
[26] |
Swofford DL. 2002. PAUP*: Phylogenetic analysis using parsimony (*and other methods). Version 4b10. Sunderland, Massachusetts: Sinauer Associates. |
[27] |
Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14:587−89 doi: 10.1038/nmeth.4285 |
[28] |
Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, et al. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61:539−42 doi: 10.1093/sysbio/sys029 |
[29] |
Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32:268−74 doi: 10.1093/molbev/msu300 |
[30] |
Minh BQ, Nguyen MAT, von Haeseler A. 2013. Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution 30:1188−95 doi: 10.1093/molbev/mst024 |
[31] |
Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, et al. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59:307−21 doi: 10.1093/sysbio/syq010 |
[32] |
Letunic I, Bork P. 2021. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Research 49:293−96 doi: 10.1093/nar/gkab301 |
[33] |
Rayner RW. 1970. A mycological colour chart. Kew, UK: Commonwealth Mycological Institute. 34 pp. |
[34] |
Bruen TC, Philippe H, Bryant D. 2006. A simple and robust statistical test for detecting the presence of recombination. Genetics 172:2665−81 doi: 10.1534/genetics.105.048975 |
[35] |
Huson DH, Bryant D. 2006. Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution 23:254−67 doi: 10.1093/molbev/msj030 |
[36] |
Dress AWM, Huson DH. 2004. Constructing splits graphs. IEEE/ACM Transactions on Computational Biology and Bioinformatics 1:109−15 doi: 10.1109/TCBB.2004.27 |
[37] |
Cunningham CW. 1997. Can three incongruence tests predict when data should be combined? Molecular Biology and Evolution 14:733−40 doi: 10.1093/oxfordjournals.molbev.a025813 |
[38] |
Freeman J, Ward E. 2004. Gaeumannomyces graminis, the take-all fungus and its relatives. Molecular Plant Pathology 5:235−52 doi: 10.1111/j.1364-3703.2004.00226.x |
[39] |
Hornby D, Slope DB, Gutteridge RJ, Sivanesan A. 1977. Gaeumannomyces cylindrosporus, a new ascomycete from cereal roots. Transactions of the British Mycological Society 69:21−25 doi: 10.1016/S0007-1536(77)80110-1 |