[1]

Francini A, Sebastiani L. 2019. Abiotic stress effects on performance of horticultural crops. Horticulturae 5:67

doi: 10.3390/horticulturae5040067
[2]

Bulgari R, Franzoni G, Ferrante A. 2019. Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy 9:306

doi: 10.3390/agronomy9060306
[3]

Mangal V, Lal MK, Tiwari RK, Altaf MA, Sood S, et al. 2023. Molecular insights into the role of reactive oxygen, nitrogen and sulphur species in conferring salinity stress tolerance in plants. Journal of Plant Growth Regulation 42:554−74

doi: 10.1007/s00344-022-10591-8
[4]

Devi R, Behera B, Raza B, Mangal V, Altaf MA, et al. 2022. An insight into microbes mediated heavy metal detoxification in plants: a review. Journal of Soil Science and Plant Nutrition 22:914−36

doi: 10.1007/s42729-021-00702-x
[5]

Altaf MA, Shahid R, Ren M, Altaf MM, Jahan MS, et al. 2021. Melatonin mitigates nickel toxicity by improving nutrient uptake fluxes, root architecture system, photosynthesis, and antioxidant potential in tomato seedling. Journal of Soil Science and Plant Nutrition 21:1842−55

doi: 10.1007/s42729-021-00484-2
[6]

Wani SH, Kumar V, Shriram V, Sah SK. 2016. Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. The Crop Journal 4:162−76

doi: 10.1016/j.cj.2016.01.010
[7]

Altaf MA, Shahid R, Altaf MM, Kumar R, Naz S, et al. 2022. Melatonin: first-line soldier in tomato under abiotic stress current and future perspective. Plant Physiology and Biochemistry 185:188−97

doi: 10.1016/j.plaphy.2022.06.004
[8]

Kohli A, Sreenivasulu N, Lakshmanan P, Kumar PP. 2013. The phytohormone crosstalk paradigm takes center stage in understanding how plants respond to abiotic stresses. Plant Cell Reports 32:945−57

doi: 10.1007/s00299-013-1461-y
[9]

Depuydt S, Hardtke CS. 2011. Hormone signalling crosstalk in plant growth regulation. Current Biology 21:R365−R373

doi: 10.1016/j.cub.2011.03.013
[10]

Jiang K, Asami T. 2018. Chemical regulators of plant hormones and their applications in basic research and agriculture. Bioscience, Biotechnology, and Biochemistry 82:1265−300

doi: 10.1080/09168451.2018.1462693
[11]

Saini S, Kaur N, Pati PK. 2021. Phytohormones: key players in the modulation of heavy metal stress tolerance in plants. Ecotoxicology and Environmental Safety 223:112578

doi: 10.1016/j.ecoenv.2021.112578
[12]

Salvi P, Manna M, Kaur H, Thakur T, Gandass N, et al. 2021. Phytohormone signaling and crosstalk in regulating drought stress response in plants. Plant Cell Reports 40:1305−29

doi: 10.1007/s00299-021-02683-8
[13]

Ku Y, Sintaha M, Cheung M, Lam H. 2018. Plant hormone signaling crosstalks between biotic and abiotic stress responses. International Journal of Molecular Sciences 19:3206

doi: 10.3390/ijms19103206
[14]

Ciura J, Kruk J. 2018. Phytohormones as targets for improving plant productivity and stress tolerance. Journal of Plant Physiology 229:32−40

doi: 10.1016/j.jplph.2018.06.013
[15]

Arif Y, Sami F, Siddiqui H, Bajguz A, Hayat S. 2020. Salicylic acid in relation to other phytohormones in plant: a study towards physiology and signal transduction under challenging environment. Environmental and Experimental Botany 175:104040

doi: 10.1016/j.envexpbot.2020.104040
[16]

Rao YR, Ansari MW, Singh AK, Bharti N, Rani V, et al. 2020. Ethylene mediated physiological response for in vitro development of salinity tolerant tomato. Journal of Plant Interactions 15:406−16

doi: 10.1080/17429145.2020.1820591
[17]

Feller U, Vaseva II. 2014. Extreme climatic events: impacts of drought and high temperature on physiological processes in agronomically important plants. Frontiers in Environmental Science 2:39

doi: 10.3389/fenvs.2014.00039
[18]

Raftery AE, Zimmer A, Frierson DMW, Startz R, Liu P. 2017. Less than 2 °C warming by 2100 unlikely. Nature Climate Change 7:637−41

doi: 10.1038/nclimate3352
[19]

Cornforth JW, Milborrow BV, Ryback G, Wareing PF. 1965. Chemistry and physiology of 'dormins' in sycamore: Identity of sycamore 'dormin' with abscisin II. Nature 205:1269−70

doi: 10.1038/2051269b0
[20]

Guschina IA, Harwood JL, Smith M, Beckett RP. 2002. Abscisic acid modifies the changes in lipids brought about by water stress in the moss Atrichum androgynum. New Phytologist 156:255−64

doi: 10.1046/j.1469-8137.2002.00517.x
[21]

Danquah A, de Zelicourt A, Colcombet J, Hirt H. 2014. The role of ABA and MAPK signaling pathways in plant abiotic stress responses. Biotechnology Advances 32:40−52

doi: 10.1016/j.biotechadv.2013.09.006
[22]

Peleg Z, Blumwald E. 2011. Hormone balance and abiotic stress tolerance in crop plants. Current Opinion in Plant Biology 14:290−95

doi: 10.1016/j.pbi.2011.02.001
[23]

Arkhipova T, Martynenko E, Sharipova G, Kuzmina L, Ivanov I, et al. 2020. Effects of plant growth promoting rhizobacteria on the content of abscisic acid and salt resistance of wheat plants. Plants 9:1429

doi: 10.3390/plants9111429
[24]

Dar NA, Amin I, Wani W, Wani SA, Shikari AB, et al. 2017. Abscisic acid: a key regulator of abiotic stress tolerance in plants. Plant Gene 11:106−11

doi: 10.1016/j.plgene.2017.07.003
[25]

Nambara E, Okamoto M, Tatematsu K, Yano R, Seo M, et al. 2010. Abscisic acid and the control of seed dormancy and germination. Seed Science Research 20:55−67

doi: 10.1017/S0960258510000012
[26]

Xu ZY, Kim SY, Hyeon DY, Kim DH, Dong T, et al. 2013. The Arabidopsis NAC transcription factor ANAC096 cooperates with bZIP-type transcription factors in dehydration and osmotic stress responses. The Plant Cell 25:4708−24

doi: 10.1105/tpc.113.119099
[27]

Llanes A, Masciarelli O, Ordóñez R, Isla MI, Luna V. 2014. Differential growth responses to sodium salts involve different abscisic acid metabolism and transport in Prosopis strombulifera. Biologia Plantarum 58:80−88

doi: 10.1007/s10535-013-0365-6
[28]

He M, He C, Ding N. 2018. Abiotic stresses: general defenses of land plants and chances for engineering multistress tolerance. Frontiers in Plant Science 9:1771

doi: 10.3389/fpls.2018.01771
[29]

Ashraf M, Foolad MR. 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany 59:206−16

doi: 10.1016/j.envexpbot.2005.12.006
[30]

Chen H, Chen X, Zheng Y. 2013. The nuclear lamina regulates germline stem cell niche organization via modulation of EGFR signaling. Cell Stem Cell 13:73−86

doi: 10.1016/j.stem.2013.05.003
[31]

Lee K, Lee HG, Yoon S, Kim HU, Seo PJ. 2015. The Arabidopsis MYB96 transcription factor is a positive regulator of ABSCISIC ACID-INSENSITIVE4 in the control of seed germination. Plant Physiology 168:677−89

doi: 10.1104/pp.15.00162
[32]

Hoque TS, Hossain MA, Mostofa MG, Burritt DJ, Fujita M, et al. 2016. Methylglyoxal: an emerging signaling molecule in plant abiotic stress responses and tolerance. Frontiers in Plant Science 7:1341

doi: 10.3389/fpls.2016.01341
[33]

Yin Y, Jiang X, Ren M, Xue M, Nan D, et al. 2018. AmDREB2C, from Ammopiptanthus mongolicus, enhances abiotic stress tolerance and regulates fatty acid composition in transgenic Arabidopsis. Plant Physiology and Biochemistry 130:517−28

doi: 10.1016/j.plaphy.2018.08.002
[34]

Singhal RK, Saha D, Skalicky M, Mishra UN, Chauhan J, et al. 2021. Crucial cell signaling compounds crosstalk and integrative multi-omics techniques for salinity stress tolerance in plants. Frontiers in Plant Science 12:670369

doi: 10.3389/fpls.2021.670369
[35]

Islam MS, Hasan K, Islam B, Renu NA, Hakim MA, et al. 2021. Responses of water and pigments status, dry matter partitioning, seed production, and traits of yield and quality to foliar application of GA3 in mungbean (Vigna radiata L.). Frontiers in Agronomy 2:596850

doi: 10.3389/fagro.2020.596850
[36]

Yamaguchi S. 2008. Gibberellin metabolism and its regulation. Annual Review of Plant Biology 59:225−51

doi: 10.1146/annurev.arplant.59.032607.092804
[37]

Pearce S, Huttly AK, Prosser IM, Li Y, Vaughan SP, et al. 2015. Heterologous expression and transcript analysis of gibberellin biosynthetic genes of grasses reveals novel functionality in the GA3ox family. BMC Plant Biology 15:130

doi: https://doi.org/10.1186/s12870-015-0520-7
[38]

Hedden P, Thomas SG. 2012. Gibberellin biosynthesis and its regulation. Biochemical Journal 444:11−25

doi: 10.1042/BJ20120245
[39]

Lo SF, Ho THD, Liu YL, Jiang MJ, Hsieh KT, et al. 2017. Ectopic expression of specific GA2 oxidase mutants promotes yield and stress tolerance in rice. Plant Biotechnology Journal 15:850−64

doi: 10.1111/pbi.12681
[40]

Mark C, Zór K, Heiskanen A, Dufva M, Emnéus J, et al. 2016. Monitoring intra-and extracellular redox capacity of intact barley aleurone layers responding to phytohormones. Analytical Biochemistry 515:1−8

doi: 10.1016/j.ab.2016.09.011
[41]

Liu Y, Huang W, Xian Z, Hu N, Lin D, et al. 2017. Overexpression of SlGRAS40 in tomato enhances tolerance to abiotic stresses and influences auxin and gibberellin signaling. Frontiers in Plant Science 8:1659

doi: 10.3389/fpls.2017.01659
[42]

Sachs T. 2005. Auxin's role as an example of the mechanisms of shoot/root relations. Plant and Soil 268:13−19

doi: 10.1007/s11104-004-0173-z
[43]

Tromas A, Braun N, Muller P, Khodus T, Paponov IA, et al. 2009. The AUXIN BINDING PROTEIN 1 is required for differential auxin responses mediating root growth. PLoS ONE 4:e6648

doi: 10.1371/journal.pone.0006648
[44]

Jurado S, Abraham Z, Manzano C, López-Torrejón G, Pacios LF, et al. 2010. The Arabidopsis cell cycle F-box protein SKP2A binds to auxin. The Plant Cell 22:3891−904

doi: 10.1105/tpc.110.078972
[45]

Potters G, Pasternak TP, Guisez Y, Jansen MAK. 2009. Different stresses, similar morphogenic responses: integrating a plethora of pathways. Plant, Cell & Environment 32:158−69

doi: 10.1111/j.1365-3040.2008.01908.x
[46]

Tognetti VB, Mühlenbock P, Van Breusegem F. 2012. Stress homeostasis – the redox and auxin perspective. Plant, Cell & Environment 35:321−33

doi: 10.1111/j.1365-3040.2011.02324.x
[47]

Taiz L, Zeiger E, Møller IM, Murphy A. 2015. Plant physiology and development, Ed. 6. Sunderland: Sinauer Associates Incorporated. 761 pp.

[48]

Awan FK, Khurshid MY, Mehmood A. 2017. Plant growth regulators and their role in abiotic stress management. The International Journal of Innovative Research in Biosciences 1:9−22

[49]

Shi Y, Tian S, Hou L, Huang X, Zhang X, et al. 2012. Ethylene signaling negatively regulates freezing tolerance by repressing expression of CBF and type-A ARR genes in Arabidopsis. The Plant Cell 24:2578−95

doi: 10.1105/tpc.112.098640
[50]

Zhou M, Zhu B, Brüggemann N, Bergmann J, Wang Y, et al. 2014. N2O and CH4 emissions, and NO3 leaching on a crop-yield basis from a subtropical rain-fed wheat–maize rotation in response to different types of nitrogen fertilizer. Ecosystems 17:286−301

doi: 10.1007/s10021-013-9723-7
[51]

Yang C, Li W, Cao J, Meng F, Yu Y, et al. 2017. Activation of ethylene signaling pathways enhances disease resistance by regulating ROS and phytoalexin production in rice. The Plant Journal 89:338−53

doi: 10.1111/tpj.13388
[52]

Abeles FB, Morgan PW, Saltveit ME Jr. 1992. Ethylene in plant biology (second edition). California: Academic Press. xv, 414 pp. https://doi.org/10.1016/C2009-0-03226-7

[53]

Kendrick MD, Chang C. 2008. Ethylene signaling: new levels of complexity and regulation. Current Opinion in Plant Biology 11:479−85

doi: 10.1016/j.pbi.2008.06.011
[54]

Maheshwari DK, Dheeman S, Agarwal M. 2015. Phytohormone-producing PGPR for sustainable agriculture. In Bacterial Metabolites in Sustainable Agroecosystem, Maheshwari DK, vol 12. Cham: Springer. pp. 159–82. https://doi.org/10.1007/978-3-319-24654-3_7

[55]

Yasir TA, Wasaya A. 2021. Brassinosteroids signaling pathways in plant defense and adaptation to stress. In Plant Growth Regulators: Signalling under Stress Conditions, eds. Aftab T, Hakeem KR. Cham: Springer. pp. 197–206. https://doi.org/10.1007/978-3-030-61153-8_9

[56]

Ullah A, Sun H, Hakim, Yang X, Zhang X. 2018. A novel cotton WRKY gene, GhWRKY6-like, improves salt tolerance by activating the ABA signaling pathway and scavenging of reactive oxygen species. Physiologia Plantarum 162:439−54

doi: 10.1111/ppl.12651
[57]

Ali Mumtaz M, Hao Y, Mehmood S, Shu H, Zhou Y, et al. 2022. Physiological and transcriptomic analysis provide molecular Insight into 24-epibrassinolide mediated Cr(VI)-toxicity tolerance in pepper plants. Environmental Pollution 306:119375

doi: 10.1016/j.envpol.2022.119375
[58]

Ahammed GJ, Li X, Liu A, Chen S. 2020. Brassinosteroids in plant tolerance to abiotic stress. Journal of Plant Growth Regulation 39:1451−64

doi: 10.1007/s00344-020-10098-0
[59]

Upreti KK, Sharma M. 2016. Role of plant growth regulators in abiotic stress tolerance. In Abiotic Stress Physiology of Horticultural Crops, eds. Rao N, Shivashankara K, Laxman R. New Delhi: Springer. pp. 19–46. https://doi.org/10.1007/978-81-322-2725-0_2

[60]

Ding H, Zhu X, Zhu Z, Yang S, Zha D, et al. 2012. Amelioration of salt-induced oxidative stress in eggplant by application of 24-epibrassinolide. Biologia Plantarum 56:767−70

doi: 10.1007/s10535-012-0108-0
[61]

Karlidag H, Yildirim E, Turan M. 2011. Role of 24-epibrassinolide in mitigating the adverse effects of salt stress on stomatal conductance, membrane permeability, and leaf water content, ionic composition in salt stressed strawberry (Fragaria×ananassa). Scientia Horticulturae 130:133−40

doi: 10.1016/j.scienta.2011.06.025
[62]

Hu Y, Jiang L, Wang F, Yu D. 2013. Jasmonate regulates the INDUCER OF CBF EXPRESSION–C-REPEAT BINDING FACTOR/DRE BINDING FACTOR1 cascade and freezing tolerance in Arabidopsis. The Plant Cell 25:2907−24

doi: 10.1105/tpc.113.112631
[63]

Kapoor D, Rattan A, Gautam V, Kapoor N, Bhardwaj R. 2014. 24-Epibrassinolide mediated changes in photosynthetic pigments and antioxidative defence system of radish seedlings under cadmium and mercury stress. Journal of Stress Physiology & Biochemistry 10:110−21

[64]

Prakash V, Singh VP, Tripathi DK, Sharma S, Corpas FJ. 2021. Nitric oxide (NO) and salicylic acid (SA): a framework for their relationship in plant development under abiotic stress. Plant Biology 23:39−49

doi: 10.1111/plb.13246
[65]

Hernández JA, Diaz-Vivancos P, Barba-Espín G, Clemente-Moreno MJ. 2017. On the role of salicylic acid in plant responses to environmental stresses. In Salicylic Acid: A Multifaceted Hormone, eds. Nazar R, Iqbal N, Khan N. Singapore: Springer. pp. 17–34. https://doi.org/10.1007/978-981-10-6068-7_2

[66]

Miao Y, Luo X, Gao X, Wang W, Li B, et al. 2020. Exogenous salicylic acid alleviates salt stress by improving leaf photosynthesis and root system architecture in cucumber seedlings. Scientia Horticulturae 272:109577

doi: 10.1016/j.scienta.2020.109577
[67]

Jahan MS, Guo S, Baloch AR, Sun J, Shu S, et al. 2020. Melatonin alleviates nickel phytotoxicity by improving photosynthesis, secondary metabolism and oxidative stress tolerance in tomato seedlings. Ecotoxicology and Environmental Safety 197:110593

doi: 10.1016/j.ecoenv.2020.110593
[68]

Li J, Qin M, Qiao X, Cheng Y, Li X, et al. 2017. A new insight into the evolution and functional divergence of SWEET transporters in Chinese white pear (Pyrus bretschneideri). Plant and Cell Physiology 58:839−50

doi: 10.1093/pcp/pcx025
[69]

Rehman H, Farooq M, Basra SMA, Afzal I. 2011. Hormonal priming with salicylic acid improves the emergence and early seedling growth in cucumber. Journal of Agriculture and Social Sciences 7:109−13

[70]

da Silva Lobato AK, Barbosa MAM, Alsahli AA, Lima EJA, da Silva BRS. 2021. Exogenous salicylic acid alleviates the negative impacts on production components, biomass and gas exchange in tomato plants under water deficit improving redox status and anatomical responses. Physiologia Plantarum 172:869−84

doi: 10.1111/ppl.13329
[71]

Zhang J, Hu H, Xu C, Hu Y, Huang Y, et al. 2019. Cloning, subcellular localization and function verification of gibberellin 2-oxidase gene in walnut (Juglans regia). Scientia Silvae Sinicae 55:50−60

doi: 10.11707/j.1001-7488.20190206
[72]

Kaya C. 2021. Nitrate reductase is required for salicylic acid-induced water stress tolerance of pepper by upraising the AsA-GSH pathway and glyoxalase system. Physiologia Plantarum 172:351−70

doi: 10.1111/ppl.13153
[73]

Zhao Y, Song C, Brummell DA, Qi S, Lin Q, et al. 2021. Jasmonic acid treatment alleviates chilling injury in peach fruit by promoting sugar and ethylene metabolism. Food Chemistry 338:128005

doi: 10.1016/j.foodchem.2020.128005
[74]

Kang G, Wang C, Sun G, Wang Z. 2003. Salicylic acid changes activities of H2O2-metabolizing enzymes and increases the chilling tolerance of banana seedlings. Environmental and Experimental Botany 50:9−15

doi: 10.1016/S0098-8472(02)00109-0
[75]

Santisree P, Jalli LCL, Bhatnagar-Mathur P, Sharma KK. 2020. Emerging roles of salicylic acid and jasmonates in plant abiotic stress responses. In Protective Chemical Agents in the Amelioration of Plant Abiotic Stress: Biochemical and Molecular Perspectives, eds. Roychoudhury A, Tripathi DK. UK: John Wiley & Sons Ltd. pp. 342−73. https://doi.org/10.1002/9781119552154.ch17

[76]

Mahdavian K, Ghorbanli M, Kalantari KM. 2008. Role of salicylic acid in regulating ultraviolet radiation-induced oxidative stress in pepper leaves. Russian Journal of Plant Physiology 55:560−63

doi: 10.1134/S1021443708040195
[77]

Shin H, Min K, Arora R. 2018. Exogenous salicylic acid improves freezing tolerance of spinach (Spinacia oleracea L.) leaves. Cryobiology 81:192−200

doi: 10.1016/j.cryobiol.2017.10.006
[78]

Dat JF, Lopez-Delgado H, Foyer CH, Scott IM. 2000. Effects of salicylic acid on oxidative stress and thermotolerance in tobacco. Journal of Plant Physiology 156:659−65

doi: 10.1016/S0176-1617(00)80228-X
[79]

El-Esawi MA, Elansary HO, El-Shanhorey NA, Abdel-Hamid AME, Ali HM, et al. 2017. Salicylic acid-regulated antioxidant mechanisms and gene expression enhance rosemary performance under saline conditions. Frontiers in Physiology 8:716

doi: 10.3389/fphys.2017.00716
[80]

Embiale A, Hussein M, Husen A, Sahile S, Mohammed K. 2016. Differential sensitivity of Pisum sativum L. cultivars to water-deficit stress: changes in growth, water status, chlorophyll fluorescence and gas exchange attributes. Journal of Agronomy 15:45−57

doi: 10.3923/ja.2016.45.57
[81]

Ergin S, Gülen H, Kesici M, Turhan E, Ipek A, et al. 2016. Effects of high temperature stress on enzymatic and nonenzymaticantioxidants and proteins in strawberry plants. Turkish Journal of Agriculture and Forestry 40:908−17

doi: 10.3906/tar-1606-144
[82]

Yildirim E, Turan M, Guvenc I. 2008. Effect of foliar salicylic acid applications on growth, chlorophyll, and mineral content of cucumber grown under salt stress. Journal of Plant Nutrition 31:593−612

doi: 10.1080/01904160801895118
[83]

Chen F, Fang P, Zeng W, Ding Y, Zhuang Z, et al. 2020. Comparing transcriptome expression profiles to reveal the mechanisms of salt tolerance and exogenous glycine betaine mitigation in maize seedlings. PLoS ONE 15:e0233616

doi: 10.1371/journal.pone.0233616
[84]

Bereded Sheferie M. 2023. Effect of seed priming methods on seed quality of okra (Abelmoschus esculentus (L.) moench) genotypes. Advances in Agriculture 2023:3951752

doi: 10.1155/2023/3951752
[85]

Arnao MB, Hernández-Ruiz J. 2014. Melatonin: plant growth regulator and/or biostimulator during stress? Trends in Plant Science 19:789−97

doi: 10.1016/j.tplants.2014.07.006
[86]

Van Tassel DL. 1997. Identification and quantification of melatonin in higher plants. Berlin Heidelberg: Springer. pp. 86−97

[87]

Wu S, Wang Y, Zhang J, Gong X, Zhang Z, et al. 2021. Exogenous melatonin improves physiological characteristics and promotes growth of strawberry seedlings under cadmium stress. Horticultural Plant Journal 7:13−22

doi: 10.1016/j.hpj.2020.06.002
[88]

Jahan MS, Guo S, Sun J, Shu S, Wang Y, et al. 2021. Melatonin-mediated photosynthetic performance of tomato seedlings under high-temperature stress. Plant Physiology and Biochemistry 167:309−20

doi: 10.1016/j.plaphy.2021.08.002
[89]

Li H, Chang J, Chen H, Wang Z, Gu X, et al. 2017. Exogenous melatonin confers salt stress tolerance to watermelon by improving photosynthesis and redox homeostasis. Frontiers in Plant Science 8:295

doi: 10.3389/fpls.2017.00295
[90]

Wang J, Cao S, Wang L, Wang X, Jin P, et al. 2018. Effect of β-aminobutyric acid on disease resistance against Rhizopus rot in harvested peaches. Frontiers in Microbiology 9:1505

doi: 10.3389/fmicb.2018.01505
[91]

Zhang T, Shi Z, Zhang X, Zheng S, Wang J, et al. 2020. Alleviating effects of exogenous melatonin on salt stress in cucumber. Scientia Horticulturae 262:109070

doi: 10.1016/j.scienta.2019.109070
[92]

Korkmaz A, Hayaloglu AA, Atasoy AF. 2017. Evaluation of the volatile compounds of fresh ripened Capsicum annuum and its spice pepper (dried red pepper flakes and isot). LWT 84:842−50

doi: 10.1016/j.lwt.2017.06.058
[93]

Wei M, Wang H, Ma T, Ge Q, Fang Y, et al. 2021. Comprehensive utilization of thinned unripe fruits from horticultural crops. Foods 10:2043

doi: 10.3390/foods10092043
[94]

Wei Z, Li C, Gao T, Zhang Z, Liang B, et al. 2019. Melatonin increases the performance of Malus hupehensis after UV-B exposure. Plant Physiology and Biochemistry 139:630−41

doi: 10.1016/j.plaphy.2019.04.026
[95]

Liu D, Howell K. 2021. Community succession of the grapevine fungal microbiome in the annual growth cycle. Environmental Microbiology 23:1842−57

doi: 10.1111/1462-2920.15172
[96]

Zamani Z, Amiri H, Ismaili A. 2020. Improving drought stress tolerance in fenugreek (Trigonella foenum-graecum) by exogenous melatonin. Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology 154:643−55

doi: 10.1080/11263504.2019.1674398
[97]

Altaf MA, Shahid R, Kumar R, Altaf MM, Kumar A, et al. 2023. Phytohormones mediated modulation of abiotic stress tolerance and potential crosstalk in horticultural crops. Journal of Plant Growth Regulation 42:4724−50

doi: 10.1007/s00344-022-10812-0
[98]

Havlová M, Dobrev PI, Motyka V, Štorchová H, Libus J, et al. 2008. The role of cytokinins in responses to water deficit in tobacco plants over-expressing trans-zeatin O-glucosyltransferase gene under 35S or SAG12 promoters. Plant, Cell & Environment 31:341−53

doi: 10.1111/j.1365-3040.2007.01766.x
[99]

Yu Y, Li Y, Yan Z, Duan X. 2022. The role of cytokinins in plant under salt stress. Journal of Plant Growth Regulation 41:2279−91

doi: 10.1007/s00344-021-10441-z
[100]

Vankova R, Gaudinova A, Dobrev P, Malbeck J, Haisel D, et al. 2010. Comparison of salinity and drought stress effects on abscisic acid metabolites activity of cytokinin oxidase/dehydrogenase and chlorophyll levels in radish audtabacco. Ecological Questions 14:99−100

doi: 10.12775/v10090-011-0028-1
[101]

Avanci NC, Luche DD, Goldman GH, Goldman MHS. 2010. Jasmonates are phytohormones with multiple functions, including plant defense and reproduction. Genetics and Molecular Research 9:484−505

doi: 10.4238/vol9-1gmr754
[102]

Srivastava V, Mishra S, Chowdhary AA, Lhamo S, Mehrotra S. 2021. The γ-aminobutyric acid (GABA) towards abiotic stress tolerance. In Compatible Solutes Engineering for Crop Plants Facing Climate Change, eds. Wani SH, Gangola MP, Ramadoss BR. Cham: Springer. pp. 171–87. https://doi.org/10.1007/978-3-030-80674-3_7

[103]

Jin P, Zheng Y, Tang S, Rui H, Wang CY. 2009. A combination of hot air and methyl jasmonate vapor treatment alleviates chilling injury of peach fruit. Postharvest Biology and Technology 52:24−29

doi: 10.1016/j.postharvbio.2008.09.011
[104]

Manzoor MA, Cheng X, Li G, Su X, Abdullah M, et al. 2020. Gene structure, evolution and expression analysis of the P-ATPase gene family in Chinese pear (Pyrus bretschneideri). Computational Biology and Chemistry 88:107346

doi: 10.1016/j.compbiolchem.2020.107346
[105]

Ghaffari H, Tadayon MR, Nadeem M, Razmjoo J, Cheema M. 2020. Foliage applications of jasmonic acid modulate the antioxidant defense under water deficit growth in sugar beet. Spanish Journal of Agricultural Research 17:e0805

doi: 10.5424/sjar/2019174-15380
[106]

Sayyari M, Babalar M, Kalantari S, Martínez-Romero D, Guillén F, et al. 2011. Vapour treatments with methyl salicylate or methyl jasmonate alleviated chilling injury and enhanced antioxidant potential during postharvest storage of pomegranates. Food Chemistry 124:964−70

doi: 10.1016/j.foodchem.2010.07.036
[107]

Jin J, Zhang H, Kong L, Gao G, Luo J. 2014. PlantTFDB 3.0: a portal for the functional and evolutionary study of plant transcription factors. Nucleic Acids Research 42:D1182−D1187

doi: 10.1093/nar/gkt1016
[108]

Kang SK, Motosugi H, Yonemori K, Sugiura A. 1998. Supercooling characteristics of some deciduous fruit trees as related to water movement within the bud. The Journal of Horticultural Science and Biotechnology 73:165−72

doi: 10.1080/14620316.1998.11510960
[109]

Yan Z, Chen J, Li X. 2013. Methyl jasmonate as modulator of Cd toxicity in Capsicum frutescens var. fasciculatum seedlings. Ecotoxicology and Environmental Safety 98:203−09

doi: 10.1016/j.ecoenv.2013.08.019
[110]

Faghih S, Ghobadi C, Zarei A. 2017. Response of strawberry plant cv. 'Camarosa' to salicylic acid and methyl jasmonate application under salt stress condition. Journal of Plant Growth Regulation 36:651−59

doi: 10.1007/s00344-017-9666-x
[111]

Ahmad P, Kumar A, Gupta A, Hu X, ul Rehman Hakeem K, et al. 2012. Polyamines: role in plants under abiotic stress. In Crop Production for Agricultural Improvement, eds. Ashraf M, Öztürk M, Ahmad M, Aksoy A. Dordrecht: Springer. pp. 491–512. https://doi.org/10.1007/978-94-007-4116-4_19

[112]

Cheng X, Li G, Ma C, Abdullah M, Zhang J, et al. 2019. Comprehensive genome-wide analysis of the pear (Pyrus bretschneideri) laccase gene (PbLAC) family and functional identification of PbLAC1 involved in lignin biosynthesis. PLoS ONE 14:e0210892

doi: 10.1371/journal.pone.0210892
[113]

Hussain SS, Ali M, Ahmad M, Siddique KH. 2011. Polyamines: natural and engineered abiotic and biotic stress tolerance in plants. Biotechnology Advances 29:300−11

doi: 10.1016/j.biotechadv.2011.01.003
[114]

Hu X, Zhang Y, Shi Y, Zhang Z, Zou Z, et al. 2012. Effect of exogenous spermidine on polyamine content and metabolism in tomato exposed to salinity–alkalinity mixed stress. Plant Physiology and Biochemistry 57:200−09

doi: 10.1016/j.plaphy.2012.05.015
[115]

Diao Q, Song Y, Qi H. 2015. Exogenous spermidine enhances chilling tolerance of tomato (Solanum lycopersicum L.) seedlings via involvement in polyamines metabolism and physiological parameter levels. Acta Physiologiae Plantarum 37:230

doi: 10.1007/s11738-015-1980-y
[116]

Zapata PJ, Serrano Ma, Pretel MT, Amorós A, Botella MÁ. 2004. Polyamines and ethylene changes during germination of different plant species under salinity. Plant Science 167:781−88

doi: 10.1016/j.plantsci.2004.05.014
[117]

Choudhary SP, Kanwar M, Bhardwaj R, Yu J, Tran LSP. 2012. Chromium stress mitigation by polyamine-brassinosteroid application involves phytohormonal and physiological strategies in Raphanus sativus L. PLoS ONE 7:e33210

doi: 10.1371/journal.pone.0033210
[118]

Wu J, Shu S, Li C, Sun J, Guo S. 2018. Spermidine-mediated hydrogen peroxide signaling enhances the antioxidant capacity of salt-stressed cucumber roots. Plant Physiology and Biochemistry 128:152−62

doi: 10.1016/j.plaphy.2018.05.002
[119]

Chen S, Liu Z, Cui J, Ding J, Xia X, et al. 2011. Alleviation of chilling-induced oxidative damage by salicylic acid pretreatment and related gene expression in eggplant seedlings. Plant Growth Regulation 65:101−08

doi: 10.1007/s10725-011-9579-9
[120]

Yiu JC, Juang LD, Fang DYT, Liu CW, Wu SJ. 2009. Exogenous putrescine reduces flooding-induced oxidative damage by increasing the antioxidant properties of Welsh onion. Scientia Horticulturae 120:306−14

doi: 10.1016/j.scienta.2008.11.020
[121]

Kapulnik Y, Koltai H. 2014. Strigolactone involvement in root development, response to abiotic stress, and interactions with the biotic soil environment. Plant Physiology 166:560−69

doi: 10.1104/pp.114.244939
[122]

van Zeijl A, Liu W, Xiao TT, Kohlen W, Yang W, et al. 2015. The strigolactone biosynthesis gene DWARF27 is co-opted in rhizobium symbiosis. BMC Plant Biology 15:260

doi: 10.1186/s12870-015-0651-x
[123]

Pandey A, Sharma M, Pandey GK. 2016. Emerging roles of strigolactones in plant responses to stress and development. Frontiers in Plant Science 7:434

doi: 10.3389/fpls.2016.00434
[124]

Min Z, Li R, Chen L, Zhang Y, Li Z, et al. 2019. Alleviation of drought stress in grapevine by foliar-applied strigolactones. Plant Physiology and Biochemistry 135:99−110

doi: 10.1016/j.plaphy.2018.11.037
[125]

Yang P, Wang Y, Li J, Bian Z. 2019. Effects of brassinosteroids on photosynthetic performance and nitrogen metabolism in pepper seedlings under chilling stress. Agronomy 9:839

doi: 10.3390/agronomy9120839
[126]

Cooper JW, Hu Y, Beyyoudh L, Yildiz Dasgan H, Kunert K, et al. 2018. Strigolactones positively regulate chilling tolerance in pea and in Arabidopsis. Plant, Cell & Environment 41:1298−310

doi: 10.1111/pce.13147
[127]

Mayzlish-Gati E, LekKala SP, Resnick N, Wininger S, Bhattacharya C, et al. 2010. Strigolactones are positive regulators of light-harvesting genes in tomato. Journal of Experimental Botany 61:3129−36

doi: 10.1093/jxb/erq138
[128]

Santoro V, Schiavon M, Gresta F, Ertani A, Cardinale F, et al. 2020. Strigolactones control root system architecture and tip anatomy in Solanum lycopersicum L. plants under P starvation. Plants 9:612

doi: 10.3390/plants9050612
[129]

Omoarelojie LO, Kulkarni MG, Finnie JF, Pospíšil T, Strnad M, et al. 2020. Synthetic strigolactone (rac-GR24) alleviates the adverse effects of heat stress on seed germination and photosystem II function in lupine seedlings. Plant Physiology and Biochemistry 155:965−79

doi: 10.1016/j.plaphy.2020.07.043
[130]

Yamamoto T, Terakami S. 2016. Genomics of pear and other Rosaceae fruit trees. Breeding Science 66:148−59

doi: 10.1270/jsbbs.66.148
[131]

Bhoi A, Yadu B, Chandra J, Keshavkant S. 2021. Contribution of strigolactone in plant physiology, hormonal interaction and abiotic stresses. Planta 254:28

doi: 10.1007/s00425-021-03678-1
[132]

Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR. 2010. Abscisic acid: emergence of a core signaling network. Annual review of plant biology 61:651−679

doi: 10.1146/annurev-arplant-042809-112122
[133]

Sosnowski J, Truba M, Vasileva V. 2023. The impact of auxin and cytokinin on the growth and development of selected crops. Agriculture 13:724

doi: 10.3390/agriculture13030724
[134]

Mkindi AG, Tembo Y, Mbega ER, Medvecky B, Kendal-Smith A, et al. 2019. Phytochemical analysis of Tephrosia vogelii across East Africa reveals three chemotypes that influence its use as a pesticidal plant. Plants 8:597

doi: 10.3390/plants8120597
[135]

Steffens B, Rasmussen A. 2016. The physiology of adventitious roots. Plant Physiology 170:603−17

doi: 10.1104/pp.15.01360
[136]

Gujjar RS, Supaibulwatana K. 2019. The mode of cytokinin functions assisting plant adaptations to osmotic stresses. Plants 8:542

doi: 10.3390/plants8120542
[137]

Singh A, Mehta S, Yadav S, Nagar G, Ghosh R, et al. 2022. How to cope with the challenges of environmental stresses in the era of global climate change: an update on ROS stave off in plants. International Journal of Molecular Sciences 23:1995

doi: 10.3390/ijms23041995
[138]

Napieraj N, Janicka M, Reda M. 2023. Interactions of polyamines and phytohormones in plant response to abiotic stress. Plants 12:1159

doi: 10.3390/plants12051159
[139]

Maffei ME, Mithöfer A, Boland W. 2007. Before gene expression: early events in plant–insect interaction. Trends in Plant Science 12:310−16

doi: 10.1016/j.tplants.2007.06.001
[140]

Wang M, Wang Y, Zhang Y, Li C, Gong S, et al. 2019. Comparative transcriptome analysis of salt-sensitive and salt-tolerant maize reveals potential mechanisms to enhance salt resistance. Genes & Genomics 41:781−801

doi: 10.1007/s13258-019-00793-y
[141]

Miller JB, Zhang S, Kos P, Xiong H, Zhou K, et al. 2017. Non-viral CRISPR/Cas gene editing in vitro and in vivo enabled by synthetic nanoparticle co-delivery of Cas9 mRNA and sgRNA. Angewandte Chemie 129:1079−83

doi: 10.1002/ange.201610209
[142]

Verma V, Ravindran P, Kumar PP. 2016. Plant hormone-mediated regulation of stress responses. BMC Plant Biology 16:86

doi: 10.1186/s12870-016-0771-y
[143]

Bari R, Jones JDG. 2009. Role of plant hormones in plant defence responses. Plant Molecular Biology 69:473−88

doi: 10.1007/s11103-008-9435-0
[144]

Pieterse CMJ, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SC. 2012. Hormonal modulation of plant immunity. Annual Review of Cell and Developmental Biology 28:489−521

doi: 10.1146/annurev-cellbio-092910-154055
[145]

Tuteja N. 2007. Mechanisms of high salinity tolerance in plants. Methods in Enzymology 428:419−38

doi: 10.1016/S0076-6879(07)28024-3
[146]

Zhang Y, Xu S, Yang S, Chen Y. 2015. Salicylic acid alleviates cadmium-induced inhibition of growth and photosynthesis through upregulating antioxidant defense system in two melon cultivars (Cucumis melo L.). Protoplasma 252:911−24

doi: 10.1007/s00709-014-0732-y
[147]

Jiang C, Lv G, Ge J, He B, Zhang Z, et al. 2021. Genome-wide identification of the GATA transcription factor family and their expression patterns under temperature and salt stress in Aspergillus oryzae. AMB Express 11:56

doi: 10.1186/s13568-021-01212-w
[148]

Abd el-naby SKM, Abdelkhalek A, Baiea M, Amin O. 2020. Mitigation of heat stress effects on Washington navel orange by using melatonin, gibberellin and salicylic treatments. Plant Archives 20:3523−34

[149]

Hu W, Zuo J, Hou X, Yan Y, Wei Y, et al. 2015. The auxin response factor gene family in banana: genome-wide identification and expression analyses during development, ripening, and abiotic stress. Frontiers in Plant Science 6:742

doi: 10.3389/fpls.2015.00742
[150]

Mutlu S, Karadağoğlu Ö, Atici Ö, Nalbantoğlu B. 2013. Protective role of salicylic acid applied before cold stress on antioxidative system and protein patterns in barley apoplast. Biologia Plantarum 57:507−13

doi: 10.1007/s10535-013-0322-4
[151]

Alférez F, Sala JM, Sanchez-Ballesta MT, Mulas M, Lafuente MT, et al. 2005. A comparative study of the postharvest performance of an ABA-deficient mutant of oranges: I. physiological and quality aspects. Postharvest Biology and Technology 37:222−31

doi: 10.1016/j.postharvbio.2005.05.010
[152]

Ghorbani B, Pakkish Z, Khezri M. 2018. Nitric oxide increases antioxidant enzyme activity and reduces chilling injury in orange fruit during storage. New Zealand Journal of Crop and Horticultural Science 46:101−16

doi: 10.1080/01140671.2017.1345764
[153]

Yang J, Wang M, Zhou S, Xu B, Chen P, et al. 2022. The ABA receptor gene MdPYL9 confers tolerance to drought stress in transgenic apple (Malus domestica). Environmental and Experimental Botany 194:104695

doi: 10.1016/j.envexpbot.2021.104695
[154]

Pakkish Z, Ghorbani B, Najafzadeh R. 2019. Fruit quality and shelf life improvement of grape cv. Rish Baba using Brassinosteroid during cold storage. Journal of Food Measurement and Characterization 13:967−75

doi: 10.1007/s11694-018-0011-2
[155]

Mahouachi J, López-Climent MF, Gómez-Cadenas A. 2014. Hormonal and hydroxycinnamic acids profiles in banana leaves in response to various periods of water stress. The Scientific World Journal 2014:540962

doi: 10.1155/2014/540962
[156]

Samaan M, Abd El-Hamed Nasser M. 2020. Effect of spraying Paclobutrazol (PP333) on yield and fruit quality of Crimson seedless grape. Journal of Plant Production 11:1031−34

[157]

Zaharah SS, Razi IM. 2009. Growth, stomata aperture, biochemical changes and branch anatomy in mango (Mangifera indica) cv. Chokanan in response to root restriction and water stress. Scientia Horticulturae 123:58−67

doi: 10.1016/j.scienta.2009.07.022
[158]

Gómez-Cadenas A, Mehouachi J, Tadeo FR, Primo-Millo E, Talon M. 2000. Hormonal regulation of fruitlet abscission induced by carbohydrate shortage in citrus. Planta 210:636−43

doi: 10.1007/s004250050054
[159]

Xu F, Xi Z, Zhang H, Zhang C, Zhang Z. 2015. Brassinosteroids are involved in controlling sugar unloading in Vitis vinifera 'Cabernet Sauvignon' berries during véraison. Plant Physiology and Biochemistry 94:197−208

doi: 10.1016/j.plaphy.2015.06.005
[160]

Arbona V, Gómez-Cadenas A. 2008. Hormonal modulation of citrus responses to flooding. Journal of Plant Growth Regulation 27:241−50

doi: 10.1007/s00344-008-9051-x
[161]

Ali M, Nassar M, Ebrahim E, Sherif H. 2020. Optimization of banana stem pulp to substitute softwood pulp for high quality paper. Egyptian Journal of Chemistry 64:1461−69

[162]

Pedrosa AM, Martins CDPS, Gonçalves LP, Costa MGC. 2015. Late embryogenesis abundant (LEA) constitutes a large and diverse family of proteins involved in development and abiotic stress responses in sweet orange (Citrus sinensis L.Osb.). PLoS ONE 10:e0145785

doi: 10.1371/journal.pone.0145785
[163]

An J, Yao J, Xu R, You C, Wang X, et al. 2018. An apple NAC transcription factor enhances salt stress tolerance by modulating the ethylene response. Physiologia Plantarum 164:279−89

doi: 10.1111/ppl.12724
[164]

Mahdavian K, Kalantari K, Ghorbanli M, Torkzade M. 2008. The effects of salicylic acid on pigment contents in ultraviolet radiation stressed pepper plants. Biologia Plantarum 52:170−72

doi: 10.1007/s10535-008-0037-0
[165]

Hajam MA, Hassan G, Parray EA, Wani M, Shabir A, et al. 2018. Transforming fruit production by plant growth regulators. Journal of Pharmacognosy and Phytochemistry 7:1613−17

[166]

Wang Y, Chen Z, Jiang Y, Duan B, Xi Z. 2019. Involvement of ABA and antioxidant system in brassinosteroid-induced water stress tolerance of grapevine (Vitis vinifera L.). Scientia Horticulturae 256:108596

doi: 10.1016/j.scienta.2019.108596
[167]

Mahmood M, Bidabadi SS, Ghobadi C, Gray DJ. 2012. Effect of methyl jasmonate treatments on alleviation of polyethylene glycol-mediated water stress in banana (Musa acuminata cv. 'Berangan', AAA) shoot tip cultures. Plant Growth Regulation 68:161−69

doi: 10.1007/s10725-012-9702-6
[168]

Wartinger A, Heilmeier H, Hartung W, Schulze ED. 1990. Daily and seasonal courses of leaf conductance and abscisic acid in the xylem sap of almond trees [Prunus dulcis (Miller) DA Webb] under desert conditions. New Phytologist 116:581−87

doi: 10.1111/j.1469-8137.1990.tb00542.x
[169]

Torres CA, Sepúlveda G, Kahlaoui B. 2017. Phytohormone interaction modulating fruit responses to photooxidative and heat stress on apple (Malus domestica Borkh.). Frontiers in Plant Science 8:2129

doi: 10.3389/fpls.2017.02129
[170]

Karlidag H, Yildirim E, Turan M. 2009. Salicylic acid ameliorates the adverse effect of salt stress on strawberry. Scientia Agricola 66:180−87

doi: 10.1590/S0103-90162009000200006
[171]

Perin EC, da Silva Messias R, Borowski JM, Crizel RL, Schott IB, et al. 2019. ABA-dependent salt and drought stress improve strawberry fruit quality. Food Chemistry 271:516−26

doi: 10.1016/j.foodchem.2018.07.213
[172]

Cheng X, Cai Y, Zhang J. 2019. Stone cell development in pear. In The Pear Genome, ed. Korban S. Cham: Springer. pp. 201–225. https://doi.org/10.1007/978-3-030-11048-2_11

[173]

Wang X, Chen X, Wang Q, Chen M, Liu X, et al. 2019. MdBZR1 and MdBZR1-2like transcription factors improves salt tolerance by regulating gibberellin biosynthesis in apple. Frontiers in Plant Science 10:1473

doi: 10.3389/fpls.2019.01473
[174]

Wang Y, Jiang H, Mao Z, Liu W, Jiang S, et al. 2021. Ethylene increases the cold tolerance of apple via the MdERF1B–MdCIbHLH1 regulatory module. The Plant Journal 106:379−93

doi: 10.1111/tpj.15170
[175]

Jackson MB, Young SF, Hall KC. 1988. Are roots a source of abscisic acid for the shoots of flooded pea plants? Journal of Experimental Botany 39:1631−37

doi: 10.1093/jxb/39.12.1631
[176]

Shi M, Xie D. 2014. Biosynthesis and metabolic engineering of anthocyanins in Arabidopsis thaliana. Recent Patents on Biotechnology 8:47−60

doi: 10.2174/1872208307666131218123538
[177]

Lan Y, Han Z, Xu X. 2004. Accumulation of jasmonic acid in apple seedlings under water stress. Acta Horticulturae Sinica 31:16−20

doi: 10.3321/j.issn:0513-353X.2004.01.004
[178]

Wang X, Du G, Lu X, Ma H, Lyu D, et al. 2019. Characteristics of mitochondrial membrane functions and antioxidant enzyme activities in strawberry roots under exogenous phenolic acid stress. Scientia Horticulturae 248:89−97

doi: 10.1016/j.scienta.2018.12.051
[179]

Kumari S, Thakur A. 2018. The effects of water stress and brassinosteroid on apple varieties. International Journal of Economic Plants 6:1−6

doi: 10.23910/IJEP/2019.6.1.0278