[1]

Deng J, Fang S, Fang X, Jin Y, Kuang Y, et al. 2023. Forest understory vegetation study: current status and future trends. Forestry Research 3:6

doi: 10.48130/fr-2023-0006
[2]

Bradford MA, Berg B, Maynard DS, Wieder WR, Wood SA. 2016. Understanding the dominant controls on litter decomposition. Journal of Ecology 104:229−38

doi: 10.1111/1365-2745.12507
[3]

Cornwell WK, Cornelissen JHC, Amatangelo K, Dorrepaal E, Eviner VT, et al. 2008. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecology Letters 11:1065−71

doi: 10.1111/j.1461-0248.2008.01219.x
[4]

Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, et al. 2004. The worldwide leaf economics spectrum. Nature 428:821−27

doi: 10.1038/nature02403
[5]

Onoda Y, Westoby M, Adler PB, Choong AMF, Clissold FJ, et al. 2011. Global patterns of leaf mechanical properties. Ecology Letters 14:301−12

doi: 10.1111/j.1461-0248.2010.01582.x
[6]

Freschet GT, Aerts R, Cornelissen JHC. 2012. A plant economics spectrum of litter decomposability. Functional Ecology 26:56−65

doi: 10.1111/j.1365-2435.2011.01913.x
[7]

Sun Z, Tian P, Zhao X, Wang Y, Wang S, et al. 2022. Temporal shifts in the explanatory power and relative importance of litter traits in regulating litter decomposition. Forest Ecosystems 9:100072

doi: 10.1016/j.fecs.2022.100072
[8]

Zukswert JM, Prescott CE. 2017. Relationships among leaf functional traits, litter traits, and mass loss during early phases of leaf litter decomposition in 12 woody plant species. Oecologia 185:305−16

doi: 10.1007/s00442-017-3951-z
[9]

Foucreau N, Puijalon S, Hervant F, Piscart C. 2013. Effect of leaf litter characteristics on leaf conditioning and on consumption by Gammarus pulex. Freshwater Biology 58:1672−81

doi: 10.1111/fwb.12158
[10]

Ferreira V, Raposeiro PM, Pereira A, Cruz AM, Costa AC, et al. 2016. Leaf litter decomposition in remote oceanic island streams is driven by microbes and depends on litter quality and environmental conditions. Freshwater Biology 61:783−99

doi: 10.1111/fwb.12749
[11]

Pérez-Harguindeguy N, Díaz S, Cornelissen JHC, Vendramini F, Cabido M, et al. 2000. Chemistry and toughness predict leaf litter decomposition rates over a wide spectrum of functional types and taxa in central Argentina. Plant and Soil 218:21−30

doi: 10.1023/A:1014981715532
[12]

Lin D, Wang F, Fanin N, Pang M, Dou P, et al. 2019. Soil fauna promote litter decomposition but do not alter the relationship between leaf economics spectrum and litter decomposability. Soil Biology and Biochemistry 136:107519

doi: 10.1016/j.soilbio.2019.107519
[13]

Wright W, Illius AW. 1995. A comparative study of the fracture properties of five grasses. Functional Ecology 9:269−78

doi: 10.2307/2390573
[14]

Atkins AG, Mai YW. 1985. Elastic and plastic fracture. Chichester, England: Ellis Horwood Ltd. 817 pp.

[15]

Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, et al. 2013. New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany 61:167−234

[16]

Bergvinson DJ, Hamilton RI, Arnason JT. 1995. Leaf profile of maize resistance factors to European corn borer, Ostrinia nubilalis. Journal of Chemical Ecology 21:343−54

doi: 10.1007/BF02036722
[17]

Yang H, Tang M, Wu W, Ding W, Ding B, et al. 2021. Study on inhibition effects and mechanism of wheat starch retrogradation by polyols. Food Hydrocolloids 121:106996

doi: 10.1016/j.foodhyd.2021.106996
[18]

Taylor BR, Parkinson D, Parsons WFJ. 1989. Nitrogen and lignin content as predictors of litter decay rates: a microcosm test. Ecology 70:97−104

doi: 10.2307/1938416
[19]

Hall SJ, Huang W, Timokhin VI, Hammel KE. 2020. Lignin lags, leads, or limits the decomposition of litter and soil organic carbon. Ecology 101:e03113

doi: 10.1002/ecy.3113
[20]

Poorter H, Niinemets Ü, Poorter L, Wright IJ, Villar R. 2009. Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytologist 182:565−88

doi: 10.1111/j.1469-8137.2009.02830.x
[21]

Enrico L, Díaz S, Westoby M, Rice BL. 2016. Leaf mechanical resistance in plant trait databases: comparing the results of two common measurement methods. Annals of Botany 117:209−14

doi: 10.1093/aob/mcv149
[22]

Cornelissen JHC, Pérez-Harguindeguy N, Díaz S, Grime JP, Marzano B, et al. 1999. Leaf structure and defence control litter decomposition rate across species and life forms in regional floras on two continents. New Phytologist 143:191−200

doi: 10.1046/j.1469-8137.1999.00430.x
[23]

Cornelissen JHC, Thompson K. 1997. Functional leaf attributes predict litter decomposition rate in herbaceous plants. New Phytologist 135:109−14

doi: 10.1046/j.1469-8137.1997.00628.x
[24]

Gallardo A, Merino J. 1993. Leaf decomposition in two Mediterranean ecosystems of southwest Spain: influence of substrate quality. Ecology 74:152−61

doi: 10.2307/1939510
[25]

Bowman DMJS, Balch JK, Artaxo P, Bond WJ, Carlson JM, et al. 2009. Fire in the earth system. Science 324:481−84

doi: 10.1126/science.1163886