[1]

Zhang T, Lu SH, Bi Q, Liang L, Wang YF, et al. 2017. Volatile oil from amomi fructus attenuates 5-fluorouracil-induced intestinal mucositis. Frontiers in Pharmacology 8:786

doi: 10.3389/fphar.2017.00786
[2]

Yan Y, Jin M, Zhou L, Liu H, Chen C, et al. 2013. Regulatory effect of herbal medicine Fructus Amomi on antibiotic-induced intestinal flora imbalance in mice. Chinese Journal of Microecology 25:1040−43

[3]

Duan L, Zhang L, Peng J, Ma J. 2009. Original report on investigation of Amomum villosum germplasm resources in Xishuangbanna. Lishizhen Medicine and Materia Medica Research 20:627−28

doi: 10.3969/j.issn.1008-0805.2009.03.059
[4]

Huang Y, Zhou Z. 2006. Effect of water extracts from Amomi Fructus and Millettia Reticulata on the improving the intestinal health and function. Academic Periodical of Farm Products Processing 8:95−96+98

[5]

Zhu J, Leng E, Chen D, Zhang J. 2001. Effects of Amomum villosum on gastrointestinal motility and Neurotransmitters in rats. Chinese Journal of Integrated Traditional and Western Medicine on Digestion 9:205−7

doi: 10.3969/j.issn.1671-038X.2001.04.004
[6]

Kang Y, Kim HY. 2004. Glucose uptake-stimulatory activity of Amomi Semen in 3T3-L1 adipocytes. Journal of Ethnopharmacology 92:103−5

doi: 10.1016/j.jep.2004.02.003
[7]

Wu X, Li X, Xiao F, Zhang Z, Xu Z, et al. 2004. Studies on the analgesic and anti-inflammatory effect of bornyl acetate in volatile oil from Amomum villosum. Journal of Chinese Medicinal Materials 27:438−39

[8]

Wu M, Guo P, Tsui SW, Chen H, Zhao Z. 2012. An ethnobotanical survey of medicinal spices used in Chinese hotpot. Food Research International 48:226−32

doi: 10.1016/j.foodres.2012.03.010
[9]

National Pharmacopoeia Commission. 2020. Chinese Pharmacopoeia, 2020th Edition. Beijing: China Medical Science Press. pp. 264-65.

[10]

Zeng Y, Hu D, Din P, Chen J, Xu H. 1999. Studies on quality standard of Fructus Amomi. China Journal of Chinese Materia Medica 24:651−653

[11]

Zhang D, Liu J, Xu H. 2005. Comparative identification of different cultivated varieties of Amomum villosum. Journal of Guangzhou University of Traditional Chinese Medicine 22:1−3

doi: 10.3969/j.issn.1007-3213.2005.01.001
[12]

Zhang D, Li S, Xiong Q, Jiang C, Lai X. 2013. Extraction, characterization and biological activities of polysaccharides from Amomum villosum. Carbohydrate Polymers 95:114−22

doi: 10.1016/j.carbpol.2013.03.015
[13]

Yan Y, Li X, Wan M, Chen J, Li S, et al. 2015. Effect of extraction methods on property and bioactivity of water-soluble polysaccharides from Amomum villosum. Carbohydrate Polymers 117:632−635

doi: 10.1016/j.carbpol.2014.09.070
[14]

Ying H, Liu J, Du Q. 2014. Analysis and determination of oestrogen-active compounds in fructus amomi by the combination of high-speed counter-current chromatography and high performance liquid chromatography. Journal of Chromatography B 958:36−42

doi: 10.1016/j.jchromb.2014.03.006
[15]

Lee SB, Kim HG, Kim HS, Lee JS, Im HJ, et al. 2016. Ethyl acetate fraction of Amomum xanthioides exerts antihepatofibrotic actions via the regulation of fibrogenic cytokines in a dimethylnitrosamine-induced rat model. Evidence-based Complementary and Alternative Medicine 2016:6014380

doi: 10.1155/2016/6014380
[16]

Kim HG, Han JM, Lee JS, Lee JS, Son CG. 2015. Ethyl acetate fraction of Amomum xanthioides improves bile duct ligation-induced liver fibrosis of rat model via modulation of pro-fibrogenic cytokines. Scientific Reports 5:14531

doi: 10.1038/srep14531
[17]

Lee YS, Kang MH, Cho SY, Jeong CS. 2007. Effects of constituents of Amomum xanthioides on gastritis in rats and on growth of gastric cancer cells. Archives of Pharmacal Research 30:436−43

doi: 10.1007/BF02980217
[18]

Shin DH, Lee JH, Kang SH, Ahn BO, Kim CK. 2016. The complete chloroplast genome of the hare’s ear root, Bupleurum falcatum: Its molecular features. Genes 7:20

doi: 10.3390/genes7050020
[19]

Jiang D, Zhao Z, Zhang T, Zhong W, Liu C, et al. 2017. The chloroplast genome sequence of Scutellaria baicalensis provides insight into intraspecific and interspecific chloroplast genome diversity in Scutellaria. Genes 8:227

doi: 10.3390/genes8090227
[20]

Zhou J, Chen X, Cui Y, Sun W, Li Y, et al. 2017. Molecular structure and phylogenetic analyses of complete chloroplast genomes of two Aristolochia medicinal species. International Journal of Molecular Sciences 18:1839

doi: 10.3390/ijms18091839
[21]

Zhao Y, Yin J, Guo H, Zhang Y, Xiao W, et al. 2015. The complete chloroplast genome provides insight into the evolution and polymorphism of Panax ginseng. Frontiers in Plant Science 5:696

doi: 10.3389/fpls.2014.00696
[22]

Zhou T, Wang J, Jia Y, Li W, Xu F, et al. 2018. Comparative chloroplast genome analyses of species in Gentiana section Cruciata (Gentianaceae) and the development of authentication markers. International Journal of Molecular Sciences 19:1962

doi: 10.3390/ijms19071962
[23]

Shen L, Guan Q, Amin A, Zhu W, Li M, et al. 2016. Complete plastid genome of Eriobotrya japonica (Thunb.) Lindl and comparative analysis in Rosaceae. SpringerPlus 5:2036

doi: 10.1186/s40064-016-3702-3
[24]

Chen S, Yin X, Han J, Sun W, Yao H, et al. 2023. DNA barcoding in herbal medicine: retrospective and prospective. Journal of Pharmaceutical Analysis 13:431−41

doi: 10.1016/j.jpha.2023.03.008
[25]

Zheng W, Chen J, Hao Z, Shi J. 2016. Comparative analysis of the chloroplast genomic information of Cunninghamia lanceolata (Lamb.) Hook with sibling species from the Genera Cryptomeria D. Don, Taiwania Hayata, and Calocedrus Kurz. International Journal of Molecular Sciences 17:1084

doi: 10.3390/ijms17071084
[26]

He Y, Xiao H, Deng C, Xiong L, Yang J, et al. 2016. The complete chloroplast genome sequences of the medicinal plant Pogostemon cablin. International Journal of Molecular Sciences 17:820

doi: 10.3390/ijms17060820
[27]

Wang W, Yu H, Wang J, Lei W, Gao J, et al. 2017. The complete chloroplast genome sequences of the medicinal plant Forsythia suspensa (Oleaceae). International Journal of Molecular Sciences 18:2288

doi: 10.3390/ijms18112288
[28]

Shivakumar VS, Appelhans MS, Johnson G, Carlsen M, Zimmer EA. 2017. Analysis of whole chloroplast genomes from the genera of the Clauseneae, the curry tribe (Rutaceae, Citrus family). Molecular Phylogenetics and Evolution 117:135−140

doi: 10.1016/j.ympev.2016.12.015
[29]

Ni L, Zhao Z, Dorje G, Ma M. 2016. The complete chloroplast genome of Ye-Xing-Ba (Scrophularia dentata; Scrophulariaceae), an alpine Tibetan herb. PLoS One 11:e0158488

doi: 10.1371/journal.pone.0158488
[30]

Hahn C, Bachmann L, Chevreux B. 2013. Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads—a baiting and iterative mapping approach. Nucleic Acids Research 41:e129

doi: 10.1093/nar/gkt371
[31]

Luo R, Liu B, Xie Y, Li Z, Huang W, et al. 2012. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1:18

doi: 10.1186/2047-217X-1-18
[32]

Wyman SK, Jansen RK, Boore JL. 2004. Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20:3252−55

doi: 10.1093/bioinformatics/bth352
[33]

Chan PP, Lowe TM. 2019. tRNAscan-SE: searching for tRNA genes in genomic sequences. In Gene prediction, ed. Kollmar M. vol. 1962. New York: Humana. pp. 1–14.https://doi.org/10.1007/978-1-4939-9173-0_11-14

[34]

Lagesen K, Hallin P, Rødland EA, Stærfeldt HH, Rognes T, et al. 2007. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Research 35:3100−8

doi: 10.1093/nar/gkm160
[35]

Delcher AL, Bratke KA, Powers EC, Salzberg SL. 2007. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23:673−79

doi: 10.1093/bioinformatics/btm009
[36]

Lohse M, Drechsel O, Bock R. 2007. OrganellarGenomeDRAW (OGDRAW): a tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes. Current Genetics 52:267−74

doi: 10.1007/s00294-007-0161-y
[37]

Zhang L, Guo Y, Luo L, Wang Y, Dong Z, et al. 2011. Analysis of nuclear gene codon bias on soybean genome and transcriptome. Acta Agronomica Sinica 37:965−74

doi: 10.1016/S1875-2780(11)60028-X
[38]

Kurtz S, Choudhuri JV, Ohlebusch E, Schleiermacher C, Stoye J, et al. 2001. REPuter: the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Research 29:4633−42

doi: 10.1093/nar/29.22.4633
[39]

Frazer KA, Pachter L, Poliakov A, Rubin EM, Dubchak I. 2004. VISTA: computational tools for comparative genomics. Nucleic Acids Research 32:W273−W279

doi: 10.1093/nar/gkh458
[40]

Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan, PA, et al. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23:2947−48

doi: 10.1093/bioinformatics/btm404
[41]

Posada D. 2008. jModelTest: Phylogenetic model averaging. Molecular Biology and Evolution 25:1253−56

doi: 10.1093/molbev/msn083
[42]

Stamatakis A, Hoover P, Rougemont J. 2008. A rapid bootstrap algorithm for the RAxML web servers. Systematic biology 57:758−71

doi: 10.1080/10635150802429642
[43]

Miller MA, Pfeiffer W, Schwartz T. 2011. The CIPRES science gateway: A community resource for phylogenetic analyses. Proceedings of the 2011 TeraGrid Conference: Extreme Digital Discovery, Utah, 2011, 41: 1-8. https://doi.org/10.1145/2016741.2016785

[44]

Song Y, Xu J, Chen N, Li M. 2017. The complete chloroplast genome of traditional Chinese medical plants Paris polyphylla var. yunnanensis. Mitochondrial DNA Part A 28:159−60

doi: 10.3109/19401736.2015.1115489
[45]

Wu M, Li Q, Hu Z, Li X, Chen S. 2017. The complete Amomum kravanh chloroplast genome sequence and phylogenetic analysis of the commelinids. Molecules 22:1875

doi: 10.3390/molecules22111875
[46]

Li Z, Zhang J, Liu Y, Liu X, Li G, et al. 2019. Characterization of the complete chloroplast genome of Amomum longiligulare (Zingiberaceae). Mitochondrial DNA Part B 4:2431−32

doi: 10.1080/23802359.2019.1637295
[47]

Cui Y, Chen X, Nie L, Sun W, Hu H, et al. 2019. Comparison and phylogenetic analysis of chloroplast genomes of three medicinal and edible Amomum species. International Journal of Molecular Sciences 20:4040

doi: 10.3390/ijms20164040
[48]

Yang L, Feng C, Cai M, Chen J, Ding P. 2020. Complete chloroplast genome sequence of Amomum villosum and comparative analysis with other Zingiberaceae plants. Chinese Herbal Medicines 12:375−83

doi: 10.1016/j.chmed.2020.05.008
[49]

Gong L, Ding X, Guan W, Zhang D, Zhang J, et al. 2022. Comparative chloroplast genome analyses of Amomum: insights into evolutionary history and species identification. BMC Plant Biology 22:520

doi: 10.1186/s12870-022-03898-x
[50]

Xia YM, Kress WJ, Prince LM. 2004. Phylogenetic analyses of Amomum (Alpinioideae: Zingiberaceae) using ITS and matK DNA sequence data. Systematic Botany 29:334−44

doi: 10.1600/036364404774195520
[51]

Huang Q, Duan Z, Yang J, Ma X, Zhan R, et al. 2014. SNP typing for germplasm identification of Amomum villosum Lour. based on DNA barcoding markers. PLoS One 9:e114940

doi: 10.1371/journal.pone.0114940