[1]

Tresch S, Frey D, Le Bayon RC, Zanetta A, Rasche F, et al. 2019. Litter decomposition driven by soil fauna, plant diversity and soil management in urban gardens. Science of The Total Environment 658:1614−29

doi: 10.1016/j.scitotenv.2018.12.235
[2]

Dighton J, Walsh E, Groben G, Zhang N. 2021. Influence of southern pine beetle on fungal communities of wood and bark decomposition of coarse woody debris in the New Jersey pine barrens. Forestry Research 1:17

doi: 10.48130/FR-2021-0017
[3]

Deng J, Fang S, Fang X, Jin Y, Kuang Y, et al. 2023. Forest understory vegetation study: current status and future trends. Forestry Research 3:6

doi: 10.48130/FR-2023-0006
[4]

Murúa JM, Gaxiola A. 2023. Variability in terrestrial litter decomposition can be explained by nutrient allocation strategies among soil decomposer communities. Functional Ecology 37:1642−52

doi: 10.1111/1365-2435.14321
[5]

Cornwell WK, Cornelissen JHC, Amatangelo K, Dorrepaal E, Eviner VT, et al. 2008. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecology Letters 11:1065−71

doi: 10.1111/j.1461-0248.2008.01219.x
[6]

Yang K, Zhu J, Zhang W, Zhang Q, Lu D, et al. 2022. Litter decomposition and nutrient release from monospecific and mixed litters: comparisons of litter quality, fauna and decomposition site effects. Journal of Ecology 110:1673−86

doi: 10.1111/1365-2745.13902
[7]

Grossman JJ, Cavender-Bares J, Hobbie SE. 2020. Functional diversity of leaf litter mixtures slows decomposition of labile but not recalcitrant carbon over two years. Ecological Monographs 90:e01407

doi: 10.1002/ecm.1407
[8]

Porre RJ, van der Werf W, De Deyn GB, Stomph TJ, Hoffland E. 2020. Is litter decomposition enhanced in species mixtures? A meta-analysis Soil Biology & Biochemistry 145:107791

doi: /10.1016/j.soilbio.2020.107791
[9]

Shi L, Xu J, Gui H. 2021. Effects of vegetation type and soil horizon on soil bacterial and fungal communities in a dry–hot valley. Circular Agricultural Systems 1:10

doi: 10.48130/CAS-2021-0010
[10]

Tonin AM, Boyero L, Monroy S, Basaguren A, Pérez J, et al. 2017. Stream nitrogen concentration, but not plant N-fixing capacity, modulates litter diversity effects on decomposition. Functional Ecology 31:1471−81

doi: 10.1111/1365-2435.12837
[11]

Ullah MR, Carrillo Y, Dijkstra FA. 2023. Relative contributions of fungi and bacteria to litter decomposition under low and high soil moisture in an Australian grassland. Applied Soil Ecology 182:104737

doi: 10.1016/j.apsoil.2022.104737
[12]

Sun T, Hobbie SE, Berg B, Zhang H, Wang Q, et al. 2018. Contrasting dynamics and trait controls in first-order root compared with leaf litter decomposition. Proceedings of the National Academy of Sciences of the United States of America 115:10392−97

doi: 10.1073/pnas.1716595115
[13]

Tao J, Zuo J, He Z, Wang Y, Liu J, et al. 2019. Traits including leaf dry matter content and leaf pH dominate over forest soil pH as drivers of litter decomposition among 60 species. Functional Ecology 33:1798−810

doi: 10.1111/1365-2435.13413
[14]

Santschi F, Gounand I, Harvey E, Altermatt F. 2018. Leaf litter diversity and structure of microbial decomposer communities modulate litter decomposition in aquatic systems. Functional Ecology 32:522−32

doi: 10.1111/1365-2435.12980
[15]

Xiao W, Chen H, Kumar P, Chen C, Guan Q. 2019. Multiple interactions between tree composition and diversity and microbial diversity underly litter decomposition. Geoderma 341:161−71

doi: 10.1016/j.geoderma.2019.01.045
[16]

Lu W, Liu N, Zhang Y, Zhou J, Guo Y, et al. 2017. Impact of vegetation community on litter decomposition: evidence from a reciprocal transplant study with 13C labeled plant litter. Soil Biology and Biochemistry 112:248−57

doi: 10.1016/j.soilbio.2017.05.014
[17]

Yang X, Qu Y, Yang N, Zhao H, Wang J, et al. 2019. Litter species diversity is more important than genotypic diversity of dominant grass species Stipa grandis in influencing litter decomposition in a bare field. Science of The Total Environment 666:490−98

doi: 10.1016/j.scitotenv.2019.02.247
[18]

Frainer A, Moretti MS, Xu WJ, Gessner MO. 2015. No evidence for leaf-trait dissimilarity effects on litter decomposition, fungal decomposers, and nutrient dynamics. Ecology 96:550−61

doi: 10.1890/14-1151.1
[19]

Liu J, Liu X, Song Q, Compson ZG, LeRoy CJ, et al. 2020. Synergistic effects: a common theme in mixed-species litter decomposition. New Phytologist 227:757−65

doi: 10.1111/nph.16556
[20]

Gripp AR, de Assis Esteves F, Carneiro LS, Guariento RD, Figueiredo-Barros MP, et al. 2018. Weak to no effects of litter biomass and mixing on litter decomposition in a seasonally dry tropical forest. Pedobiologia 68:20−23

doi: 10.1016/j.pedobi.2018.02.003
[21]

Desie E, Zuo J, Verheyen K, Djukic I, Van Meerbeek K, et al. 2023. Disentangling drivers of litter decomposition in a multi-continent network of tree diversity experiments. Science of The Total Environment 857:159717

doi: 10.1016/j.scitotenv.2022.159717
[22]

Zhang L, Li J, Wang Z, Zhang D, Liu H, et al. 2023. Litter mixing promoted decomposition and altered microbial community in common bean root litter. BMC Microbiology 23:148

doi: 10.1186/s12866-023-02871-4
[23]

Zeng L, He W, Teng M, Luo X, Yan Z, et al. 2018. Effects of mixed leaf litter from predominant afforestation tree species on decomposition rates in the Three Gorges Reservoir, China. Science of The Total Environment 639:679−86

doi: 10.1016/j.scitotenv.2018.05.208
[24]

He Z, Yu Z, Huang Z, Davis M, Yang Y. 2016. Litter decomposition, residue chemistry and microbial community structure under two subtropical forest plantations: a reciprocal litter transplant study. Applied Soil Ecology 101:84−92

doi: 10.1016/j.apsoil.2016.01.015
[25]

Su Z, Su B, Wu Y, Zhang Y, Wang J, et al. 2023. A less complex but more specialized microbial network resulted in faster fine-root decomposition in young stands of Robinia pseudoacacia. Applied Soil Ecology 182:104735

doi: 10.1016/j.apsoil.2022.104735
[26]

Hu Z, Xu C, McDowell NG, Johnson DJ, Wang MH, et al. 2017. Linking microbial community composition to C loss rates during wood decomposition. Soil Biology and Biochemistry 104:108−16

doi: 10.1016/j.soilbio.2016.10.017
[27]

Barel JM, Kuyper TW, Paul J, de Boer W, Cornelissen JHC, et al. 2019. Winter cover crop legacy effects on litter decomposition act through litter quality and microbial community changes. Journal of Applied Ecology 56:132−43

doi: 10.1111/1365-2664.13261
[28]

Zhang W, Yang K, Lyu Z, Zhu J. 2019. Microbial groups and their functions control the decomposition of coniferous litter: a comparison with broadleaved tree litters. Soil Biology and Biochemistry 133:196−207

doi: 10.1016/j.soilbio.2019.03.009
[29]

Žifčáková L, Větrovský T, Lombard V, Henrissat B, Howe A, et al. 2017. Feed in summer, rest in winter: microbial carbon utilization in forest topsoil. Microbiome 5:122

doi: 10.1186/s40168-017-0340-0
[30]

Purahong W, Kapturska D, Pecyna MJ, Jariyavidyanont K, Kaunzner J, et al. 2015. Effects of forest management practices in temperate beech forests on bacterial and fungal communities involved in leaf litter degradation. Microbial Ecology 69:905−13

doi: 10.1007/s00248-015-0585-8
[31]

Frey-Klett P, Burlinson P, Deveau A, Barret M, Tarkka M, et al. 2011. Bacterial-fungal interactions: hyphens between agricultural, clinical, environmental, and food microbiologists. Microbiology and Molecular Biology Reviews 75:583−609

doi: 10.1128/MMBR.00020-11
[32]

Purahong W, Wubet T, Lentendu G, Schloter M, Pecyna MJ, et al. 2016. Life in leaf litter: novel insights into community dynamics of bacteria and fungi during litter decomposition. Molecular Ecology 25:4059−74

doi: 10.1111/mec.13739
[33]

Yan J, Wang L, Hu Y, Tsang Y, Zhang Y, et al. 2018. Plant litter composition selects different soil microbial structures and in turn drives different litter decomposition pattern and soil carbon sequestration capability. Geoderma 319:194−203

doi: 10.1016/j.geoderma.2018.01.009
[34]

Stoker D, Falkner AJ, Murray KM, Lang AK, Barnum TR, et al. 2017. Decomposition of terrestrial resource subsidies in headwater streams: does consumer diversity matter? Ecosphere 8:e01868

doi: 10.1002/ecs2.1868
[35]

Fanin N, Bertrand I. 2016. Aboveground litter quality is a better predictor than belowground microbial communities when estimating carbon mineralization along a land-use gradient. Soil Biology and Biochemistry 94:48−60

doi: 10.1016/j.soilbio.2015.11.007
[36]

Sun H, Wang Q, Liu N, Li L, Zhang C, et al. 2017. Effects of different leaf litters on the physicochemical properties and bacterial communities in Panax ginseng-growing soil. Applied Soil Ecology 111:17−24

doi: 10.1016/j.apsoil.2016.11.008
[37]

Jin X, Wang Z, Wu F, Li X, Zhou X. 2022. Litter mixing alters microbial decomposer community to accelerate tomato root litter decomposition. Microbiology Spectrum 10:e00186-22

doi: 10.1128/spectrum.00186-22
[38]

Bai X, Dippold MA, An S, Wang B, Zhang H, et al. 2021. Extracellular enzyme activity and stoichiometry: the effect of soil microbial element limitation during leaf litter decomposition. Ecological Indicators 121:107200

doi: 10.1016/j.ecolind.2020.107200
[39]

Handa IT, Aerts R, Berendse F, Berg MP, Bruder A, et al. 2014. Consequences of biodiversity loss for litter decomposition across biomes. Nature 509:218−21

doi: 10.1038/nature13247
[40]

Dong X, Gao P, Zhou R, Li C, Dun X, et al. 2021. Changing characteristics and influencing factors of the soil microbial community during litter decomposition in a mixed Quercus acutissima Carruth. and Robinia pseudoacacia L. forest in Northern China. CATENA 196:104811

doi: 10.1016/j.catena.2020.104811
[41]

Marron N, Epron D. 2019. Are mixed-tree plantations including a nitrogen-fixing species more productive than monocultures? Forest Ecology and Management 441:242−52

doi: 10.1016/j.foreco.2019.03.052
[42]

Wang X, Lin D, Zhao L, Michalet R. 2023. The relative importance of coarse-scale climate and fine-scale nitrogen availability contrasts in driving home-field advantage effects in litter decomposition. Ecosystems

doi: 10.1007/s10021-023-00844-2
[43]

Lin C, Yang Y, Guo J, Chen G, Xie J. 2011. Fine root decomposition of evergreen broadleaved and coniferous tree species in mid-subtropical China: dynamics of dry mass, nutrient and organic fractions. Plant and Soil 338:311−27

doi: 10.1007/s11104-010-0547-3
[44]

Vanderbilt KL, White CS, Hopkins O, Craig JA. 2008. Aboveground decomposition in arid environments: results of a long-term study in central New Mexico. Journal of Arid Environments 72:696−709

doi: 10.1016/j.jaridenv.2007.10.010
[45]

Hultman J, Waldrop MP, Mackelprang R, David MM, McFarland J, et al. 2015. Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes. Nature 521:208−12

doi: 10.1038/nature14238
[46]

Hoorens B, Aerts R, Stroetenga M. 2003. Does initial litter chemistry explain litter mixture effects on decomposition? Oecologia 137:578−86

doi: 10.1007/s00442-003-1365-6
[47]

Ziegler M, Seneca FO, Yum LK, Palumbi SR, Voolstra CR. 2017. Bacterial community dynamics are linked to patterns of coral heat tolerance. Nature Communications 8:14213

doi: 10.1038/ncomms14213
[48]

He Q, Wang S, Hou W, Feng K, Li F, et al. 2021. Temperature and microbial interactions drive the deterministic assembly processes in sediments of hot springs. Science of The Total Environment 772:145465

doi: 10.1016/j.scitotenv.2021.145465
[49]

Zhou S, Butenschoen O, Barantal S, Handa IT, Makkonen M, et al. 2020. Decomposition of leaf litter mixtures across biomes: the role of litter identity, diversity and soil fauna. Journal of Ecology 108:2283−97

doi: 10.1111/1365-2745.13452
[50]

Chen Y, Ma S, Jiang H, Yangzom D, Cheng G, et al. 2021. Decomposition time, chemical traits and climatic factors determine litter-mixing effects on decomposition in an alpine steppe ecosystem in Northern Tibet. Plant and Soil 459:23−35

doi: 10.1007/s11104-019-04131-9
[51]

Zhang C, Li S, Zhang L, Xin X, Liu X. 2014. Litter mixing significantly affects decomposition in the Hulun Buir meadow steppe of Inner Mongolia, China. Journal of Plant Ecology 7:59−67

doi: 10.1093/jpe/rtt022
[52]

Zhang X, Wang Y, Jiang W, Mao R. 2020. Effect of expanded shrub litter on decomposition of graminoid litter in a temperate freshwater marsh. Plant and Soil 451:409−18

doi: 10.1007/s11104-020-04536-x
[53]

Pausas JG, Bond WJ. 2020. On the three major recycling pathways in terrestrial ecosystems. Trends in Ecology & Evolution 35:767−75

doi: 10.1016/j.tree.2020.04.004
[54]

Lazzaro L, Mazza G, d'Errico G, Fabiani A, Giuliani C, et al. 2018. How ecosystems change following invasion by Robinia pseudoacacia: insights from soil chemical properties and soil microbial, nematode, microarthropod and plant communities. Science of The Total Environment 622–623:1509−18

doi: 10.1016/j.scitotenv.2017.10.017
[55]

Liu J, Zhang Z, Li Y, Han J, Si H, et al. 2022. Effects of the vegetative propagation method on juvenility in Robinia pseudoacacia L. Forestry Research 2:17

doi: 10.48130/FR-2022-0017
[56]

Chikowore G, Martin GD, Chidawanyika F. 2021. An assessment of the invasive alien tree, Robinia pseudoacacia canopy traits and its effect on grassland microclimates and subsequent arthropod assemblages. Journal of Insect Conservation 25:429−39

doi: 10.1007/s10841-021-00311-0
[57]

Nasir H, Iqbal Z, Hiradate S, Fujii Y. 2005. Allelopathic potential of Robinia pseudo-acacia L. Journal of Chemical Ecology 31:2179−92

doi: 10.1007/s10886-005-6084-5
[58]

Wang C, Wang W, Sardans J, Ouyang L, Tong C, et al. 2020. Higher fluxes of C, N and P in plant/soil cycles associated with plant invasion in a subtropical estuarine wetland in China. Science of The Total Environment 730:139124

doi: 10.1016/j.scitotenv.2020.139124
[59]

Polyakova O, Billor N. 2007. Impact of deciduous tree species on litterfall quality, decomposition rates and nutrient circulation in pine stands. Forest Ecology and Management 253:11−18

doi: 10.1016/j.foreco.2007.06.049
[60]

Ren C, Zhao F, Kang D, Yang G, Han X, et al. 2016. Linkages of C:N:P stoichiometry and bacterial community in soil following afforestation of former farmland. Forest Ecology and Management 376:59−66

doi: 10.1016/j.foreco.2016.06.004
[61]

Krashevska V, Malysheva E, Klarner B, Mazei Y, Maraun M, et al. 2018. Micro-decomposer communities and decomposition processes in tropical lowlands as affected by land use and litter type. Oecologia 187:255−66

doi: 10.1007/s00442-018-4103-9
[62]

Schneider T, Keiblinger KM, Schmid E, Sterflinger-Gleixner K, Ellersdorfer G, et al. 2012. Who is who in litter decomposition? Metaproteomics reveals major microbial players and their biogeochemical functions The ISME Journal 6:1749−62

doi: 10.1038/ismej.2012.11
[63]

Lladó S, López-Mondéjar R, Baldrian P. 2017. Forest soil bacteria: diversity, involvement in ecosystem processes, and response to global change. Microbiology and Molecular Biology Reviews 81:e00063-16

doi: 10.1128/mmbr.00063-16
[64]

Niu X, Sun X, Chen D, Zhang S. 2020. Mixing litter from Larix kaempferi (lamb.) Carr. and broad-leaved trees enhances decomposition by different mechanisms in temperate and subtropical alpine regions of China. Plant and Soil 452:43−60

doi: 10.1007/s11104-020-04527-y
[65]

Sanaullah M, Chabbi A, Girardin C, Durand JL, Poirier M, et al. 2014. Effects of drought and elevated temperature on biochemical composition of forage plants and their impact on carbon storage in grassland soil. Plant and Soil 374:767−78

doi: 10.1007/s11104-013-1890-y
[66]

Ashworth AJ, DeBruyn JM, Allen FL, Radosevich M, Owens PR. 2017. Microbial community structure is affected by cropping sequences and poultry litter under long-term no-tillage. Soil Biology and Biochemistry 114:210−19

[67]

Sauvadet M, Chauvat M, Cluzeau D, Maron PA, Villenave C, et al. 2016. The dynamics of soil micro-food web structure and functions vary according to litter quality. Soil Biology and Biochemistry 95:262−74

doi: 10.1016/j.soilbio.2016.01.003
[68]

Janssens IA, Dieleman W, Luyssaert S, Subke JA, Reichstein M, et al. 2010. Reduction of forest soil respiration in response to nitrogen deposition. Nature Geoscience 3:315−22

doi: 10.1038/ngeo844
[69]

Chen L, Redmile-Gordon M, Li J, Zhang J, Xin X, et al. 2019. Linking cropland ecosystem services to microbiome taxonomic composition and functional composition in a sandy loam soil with 28-year organic and inorganic fertilizer regimes. Applied Soil Ecology 139:1−9

doi: 10.1016/j.apsoil.2019.03.011
[70]

Zeng Q, Liu Y, Zhang H, An S. 2019. Fast bacterial succession associated with the decomposition of Quercus wutaishanica litter on the Loess Plateau. Biogeochemistry 144:119−31

doi: 10.1007/s10533-019-00575-4