[1]

Habtemichael FG, Cetin M. 2016. Short-term traffic flow rate forecasting based on identifying similar traffic patterns. Transportation Research Part C: Emerging Technologies 66:61−78

doi: 10.1016/j.trc.2015.08.017
[2]

Zhao Z, Chen W, Wu X, Chen PCY, Liu J. 2017. LSTM network: a deep learning approach for short-term traffic forecast. IET Intelligent Transport Systems 11:68−75

doi: 10.1049/iet-its.2016.0208
[3]

Tan H, Wu Y, Shen B, Jin PJ, Ran B. 2016. Short-term traffic prediction based on dynamic tensor completion. IEEE Transactions on Intelligent Transportation Systems 17:2123−33

doi: 10.1109/TITS.2015.2513411
[4]

Kumar SV, Vanajakshi L. 2015. Short-term traffic flow prediction using seasonal ARIMA model with limited input data. European Transport Research Review 7:21

doi: 10.1007/s12544-015-0170-8
[5]

Ojeda LL, Kibangou AY, de Wit CC. 2013. Adaptive Kalman filtering for multi-step ahead traffic flow prediction. 2013 American Control Conference, Washington, DC, USA, June 17−19, 2013. USA: IEEE. pp. 4724−29. https://doi.org/10.1109/ACC.2013.6580568

[6]

Cai Y, Huang H, Cai H, Qi Y. 2017. A K-nearest neighbor locally search regression algorithm for short-term traffic flow forecasting. 2017 9th International Conference on Modelling, Identification and Control (ICMIC), Kunming, China, July 10−12, 2017. USA: IEEE. pp. 624−29. https://doi.org/10.1109/ICMIC.2017.8321530

[7]

Li L, He S, Zhang J. 2016. Online short-term traffic flow prediction considering the impact of temporal-spatial features. Journal of Transportation Systems Engineering and Information Technology 16:165−71

doi: 10.16097/j.cnki.1009-6744.2016.05.025
[8]

Ma X, Tao Z, Wang Y, Yu H, Wang Y. 2015. Long short-term memory neural network for traffic speed prediction using remote microwave sensor data. Transportation Research Part C: Emerging Technologies 54:187−97

doi: 10.1016/j.trc.2015.03.014
[9]

Yu H, Wu Z, Wang S, Wang Y, Ma X. 2017. Spatiotemporal recurrent convolutional networks for traffic prediction in transportation networks. Sensors 17:1501

doi: 10.3390/s17071501
[10]

Li Y, Chai S, Ma Z, Wang G. 2021. A hybrid deep learning framework for long-term traffic flow prediction. IEEE Access 9:11264−71

doi: 10.1109/ACCESS.2021.3050836
[11]

Çakmak UC, Apaydın MS, Çatay B. 2018. Traffic speed prediction with neural networks. In Operations Research Proceedings 2017, eds. Kliewer N, Ehmke J, Borndörfer R. Cham: Springer. pp. 737−43. https://doi.org/10.1007/978-3-319-89920-6_98

[12]

Zhang L, Zhang G. 2011. Combined forecast model for medium-term traffic flow based on polynomial and Fourier series. Journal of Xihua University (Natural Science Edition) 30(5):5−8+17

doi: 10.3969/j.issn.1673-159X.2011.05.002
[13]

Hou Z, Li X. 2016. Repeatability and similarity of freeway traffic flow and long-term prediction under big data. IEEE Transactions on Intelligent Transportation Systems 17:1786−96

doi: 10.1109/TITS.2015.2511156
[14]

Dong X, Lei T, Jin S, Hou Z. 2018. Short-term traffic flow prediction based on XGBoost. 2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS), Enshi, China, May 25−27, 2018. USA: IEEE. pp. 854−59. https://doi.org/10.1109/DDCLS.2018.8516114

[15]

Lartey B, Homaifar A, Girma A, Karimoddini A, Opoku D. 2021. XGBoost: a tree-based approach for traffic volume prediction. 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC). October 17-20, 2021, Melbourne, Australia. USA: IEEE. pp. 1280−86. https://doi.org/10.1109/SMC52423.2021.9658959

[16]

Zhang X, Zhang Q. 2020. Short-Term Traffic Flow Prediction Based on LSTM-XGBoost Combination Model. CMES-Computer Modeling in Engineering & Sciences 125(1):95−109

doi: 10.32604/cmes.2020.011013
[17]

Chen Z, Fan W. 2021. A freeway travel time prediction method based on an XGBoost model. Sustainability 13:8577

doi: 10.3390/su13158577
[18]

Cheng W, Li J, Xiao H, Ji L. 2022. Combination predicting model of traffic congestion index in weekdays based on LightGBM-GRU. Scientific Reports 12:2912

doi: 10.1038/s41598-022-06975-1
[19]

Tran Quang D, Bae SH. 2021. A hybrid deep convolutional neural network approach for predicting the traffic congestion index. Promet - Traffic & Transportation 33:373−85

doi: 10.7307/ptt.v33i3.3657
[20]

Zhang L, Liu S, Tian Y. 2021. Traffic state index prediction based on convolutional and LSTM fusion model. Traffic & Transportation 37(1):91−95

[21]

Bao X, Jiang D, Yang X, Wang H. 2020. An improved deep belief network for traffic prediction considering weather factors. Alexandria Engineering Journal 60:413−20

doi: 10.1016/j.aej.2020.09.003
[22]

Wan J, Li J, Zhang S. 2018. Prediction model for ship traffic flow considering periodic fluctuation factors. 2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, China, October 12−14, 2018. USA: IEEE. pp. 1506−10. https://doi.org/10.1109/IAEAC.2018.8577732

[23]

Chen Y, Lv Y, Li Z, Wang F. 2016. Long short-term memory model for traffic congestion prediction with online open data. 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), Rio de Janeiro, Brazil, 2016. USA: IEEE. pp. 132-37. https://doi.org/10.1109/ITSC.2016.7795543

[24]

Pulugurtha SS, Duddu VR, Venigalla M. 2020. Evaluating spatial and temporal effects of planned special events on travel time performance measures. Transportation Research Interdisciplinary Perspectives 6:100168

doi: 10.1016/j.trip.2020.100168
[25]

Beijing Municipal Bureau of Quality and Technical Supervision. 2011. Urban road traffic performance index, DB11/T 785-2011. http://jtw.beijing.gov.cn/xxgk/flfg/jthy/201912/P020191231386181515095.pdf

[26]

Saeedmanesh M, Geroliminis N. 2017. Dynamic clustering and propagation of congestion in heterogeneously congested urban traffic networks. Transportation Research Part B: Methodological 105:193−211

doi: 10.1016/j.trb.2017.08.021
[27]

Chen T, Guestrin C. 2016. XGBoost: A Scalable Tree Boosting System. KDD '16: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco California USA, August 13−17, 2016. New York, United States: Association for Computing Machinery. pp. 785−94. https://doi.org/10.1145/2939672.2939785

[28]

Ding C, Wang D, Ma X, Li H. 2016. Predicting short-term subway ridership and prioritizing its influential factors using gradient boosting decision trees. Sustainability 8:1100

doi: 10.3390/su8111100
[29]

Firinguetti-Limone L, Pereira-Barahona M. 2020. Bayesian estimation of the shrinkage parameter in ridge regression. Communications in Statistics - Simulation and Computation 49:3314−27

doi: 10.1080/03610918.2018.1547395
[30]

Kemp F. 2003. Applied multiple regression/correlation analysis for the behavioral sciences. Journal of the Royal Statistical Society Series D (the Statistician) 52:691

doi: 10.1046/j.1467-9884.2003.t01-2-00383_4.x
[31]

Alshaybawee T, Midi H, Alhamzawi R. 2017. Bayesian elastic net single index quantile regression. Journal of Applied Statistics 44:853−71

doi: 10.1080/02664763.2016.1189515
[32]

Ahn J, Ko E, Kim EY. 2016. Highway traffic flow prediction using support vector regression and Bayesian classifier. 2016 International Conference on Big Data and Smart Computing (BigComp), Hong Kong, China, January 18-20, 2016. USA: IEEE. pp. 239−44. https://doi.org/10.1109/BIGCOMP.2016.7425919