[1]

Commission SP. 2020. Pharmacopoeia of the People's Republic of China. Beijing: China Medical Science and Technology Press. 280 pp.

[2]

Sun W, Leng L, Yin Q, Xu M, Huang M, et al. 2019. The genome of the medicinal plant Andrographis paniculata provides insight into the biosynthesis of the bioactive diterpenoid neoandrographolide. The Plant Journal 97:841−57

doi: 10.1111/tpj.14162
[3]

Koteswara Rao Y, Vimalamma G, Venkata Rao C, Tzeng YM. 2004. Flavonoids and andrographolides from Andrographis paniculata. Phytochemistry 65:2317−21

doi: 10.1016/j.phytochem.2004.05.008
[4]

Adiguna SP, Panggabean JA, Atikana A, Untari F, Izzati F, et al. 2021. Antiviral activities of andrographolide and its derivatives: Mechanism of action and delivery system. Pharmaceuticals 14(11):1102

doi: 10.3390/ph14111102
[5]

Raina AP, Gupta V, Sivaraj N, Dutta M. 2013. Andrographis paniculate (Burm. f.) Wall. ex Nees (kalmegh), a traditional hepatoprotective drug from India. Genetic Resources and Crop Evolution 60:1181−89

doi: 10.1007/s10722-012-9953-0
[6]

Chen R, Wang X, Song Y, Zhu Y, Wang P, et al. 2014. Genetic diversity analysis of Andrographis paniculata in China based on SRAP and SNP. China Journal of Chinese Materia Medica 39(23):4559−65(in Chinese)

doi: 10.4268/cjcmm20142316
[7]

Editorial Committee Of Flora Of China CAOS. 2002. Flora of China. Beijing: Science Press. pp. 204−5

[8]

Chen D, Zhong C, Lin Y. 2020. Research progress on germplasm resources, breeding, and cultivation of medicinal plant Andrographis paniculate (Burm. f.) Nees. Jiangsu Agricultural Sciences 48:34−40(in Chinese)

doi: 10.15889/j.issn.1002-1302.2020.21.006
[9]

Liang Y, Chen S, Wei K, Yang Z, Duan S, et al. 2020. Chromosome level genome assembly of Andrographis paniculata. Frontiers in Genetics 11:701

doi: 10.3389/fgene.2020.00701
[10]

Guan R, Xu S, Lu Z, Su L, Zhang L, et al. 2022. Genomic characterization of bZIP transcription factors related to andrographolide biosynthesis in Andrographis paniculata. International Journal of Biological Macromolecules 223:1619−31

doi: 10.1016/j.ijbiomac.2022.10.283
[11]

Zhang R, Chen Z, Zhang L, Yao W, Xu Z, et al. 2021. Genomic characterization of WRKY transcription factors related to andrographolide biosynthesis in Andrographis paniculata. Frontiers in Genetics 18(11):601−89

doi: 10.3389/fgene.2020.601689
[12]

Xiao B. 2009. Lingnan Medicinal Collection Record. Guangzhou: Guangdong Science and Technology Press (Photocopy based on 1932 Xiao Linglan Room print, in Chinese).

[13]

Pan HT, Wang JJ, Huang JL, Shuai YL, Li J, et al. 2020. Ranibizumab plus fufang xueshuantong capsule versus ranibizumab alone for exudative age-related macular degeneration. Journal of International Medical Research 48(9):1−10

doi: 10.1177/0300060520931618
[14]

Wang X, Zhao C. 2002. Study on quantitative method of dehydrographolide in compound Dantong Tablet. Journal of Guangdong Pharmaceutical University 18(4):285−87(in Chinese)

doi: 10.3969/j.issn.1006-8783.2002.04.011
[15]

Huang S, Yang Q, Zhao L, Huang H, Deng H. 2018. A retrospective analysis of external application of Zijinding combined with SihuangShuimi for subacute thyroiditis. Journal of New Chinese Medicine 50:65−67(in Chinese)

doi: 10.13457/j.cnki.jncm.2018.09.018
[16]

Xu H. 2008. Preparation and clinical application of Jinji granules. Heilongjiang Medicine Journal 21(5):58−59(in Chinese)

[17]

Qiu H, Li M, Liao Z. 2011. Simultaneous determination of andrographolide and dehydrographolide in Jinji Capsules by HPLC. Chinese Journal of Hospital Pharmacy 31:1142−43(in Chinese)

[18]

Shanghai TCM Pharmaceutical Factory No. 2. 1975. Shanghai snake medicine. Chinese Journal of Pharmaceuticals 7:36−37(in Chinese)

[19]

Feng J, Li S, Xu J. 2021. Therapeutic effect of Liapfeining Tablet combined with 2HRZE/4HR in the treatment of active pulmonary tuberculosis and its effect on levels of PCT, IL-10 and TNF-α. Drug Evaluation Research 44:550−55(in Chinese)

[20]

Tang D, Yan X. 2017. Determination of chlorogenic acid, gardeniside, andrographolide and dehydroandrographolide in Qingreichuang Pills by HPLC. Traditional Chinese Drug Research and Clinical Pharmacology 28:223−27(in Chinese)

doi: 10.19378/j.issn.1003-9783.2017.02.017
[21]

Zhang C. 2018. Effect of Qingre Anchuang Tablet combined with Adaparine gel on acne. Drugs and Clinic 33:2705−8(in Chinese)

[22]

Ji N, Zhao L, Feng X, Luo L, Liang T, et al. 2015. Clinical observation of Kangfu Xiaoyan Supposant combined with levofloxacin and microwave physiotherapy in the treatment of chronic pelvic inflammatory disease. China Practical Medicine 10:15−17(in Chinese)

doi: 10.14163/j.cnki.11-5547/r.2015.24.008
[23]

Zhang H, Pan X, Xu X, Deng Q, Wang D. 2015. Study on thin layer identification of Formula Chuanxinlian Tablets. Chinese Traditional Patent Medicine 37:460−62(in Chinese)

doi: 10.3969/j.issn.1001-1528.2015.02.052
[24]

Pan J, Zuo KN, Wang XM, Zhang MP, Wang ZH, et al. 2021. Systematic review and meta-analysis of randomized controlled trials of Fuke Qianjin tablet. Evidence-Based Complementary And Alternative Medicine 2021:8861631

doi: 10.1155/2021/8861631
[25]

Shen X, Huang Y. 2011. Determination of dehydroandrographolide in Fufang Huangqin Tablets by HPLC. Strait Pharmaceutical Journal 23:93−94(in Chinese)

doi: 10.3969/j.issn.1006-3765.2011.12.043
[26]

Lu Q. 2016. Determination of five components in Formula Kudu Xiaoyan Tablets by RP-HPLC. Chinese Traditional Patent Medicine 38:2590−93(in Chinese)

[27]

Yang J, Wu S. 1996. Determination of andrographolide in Lixieling Tablets by HPLC. Chinese Traditional Patent Medicine 18(6):11−12(in Chinese)

[28]

Liu Y, Guo L, Liu C. 1999. TLC Qualitative analysis of Xiaoyan Zhililing Tablets. Chinese Traditional Patent Medicine 21(5):231(in Chinese)

[29]

Zhao X, Shen X. 2006. Determination of dehydroandrographolide in Xiaoyan Zhike tablets by HPLC. Chinese Journal of Experimental Traditional Medical Formulae 12(7):14−15(in Chinese)

doi: 10.13422/j.cnki.syfjx.2006.07.008
[30]

Zhang J. 2001. Study on the quality standard of Qinggan Chuanxinlian Tablets. Chinese Traditional and Herbal Drugs 32(9):Journal of TCM Univ. of Hunan(in Chinese)(in Chinese)

[31]

Guo J, Xiang F, Lin B. 2006. Determination of dehydroandrographolide in Cuilian Jiedu Tablets by RP-HPLC. Herald of Medicine 25(11):1211−12(in Chinese)

doi: 10.3870/j.issn.1004-0781.2006.11.054
[32]

Feng X, Fang S, Gao Y, Liu J, Chen W. 2018. Current research situation of nephrotoxicity of Chinese herbal medicine. China Journal of Chinese Materia Medica 43:417−24(in Chinese)

doi: 10.19540/j.cnki.cjcmm.2018.0009
[33]

Zou G, You X, Zhang Y, Wang G, Jiang H. 2008. New method of multi-components quantitation by one marker new method for quality evaluation of Guanmaikang capsula. China Journal of Chinese Materia Medica 33(15):1828−31(in Chinese)

[34]

Yang X, Zhao K, Zhai H, Wang H. 2022. Determination of andrographolide and dehydroandrographolide in Kangle Biyan Tablets by dual wavelength HPLC. Drug Standards of China 23:51−54(in Chinese)

doi: 10.19778/j.chp.2022.01.011
[35]

Zhou X, He Y, Wu S. 2008. Determination of acetaminophen and morph guanidine hydrochloride in Zhiganjia Tablets. China Pharmaceuticals 17:24(in Chinese)

doi: 10.3969/j.issn.1006-4931.2008.24.020
[36]

Du J, Mo J. 2012. Determination of andrographolide and dehydroandrographolide in Houkang Powder by HPLC. Journal of Chinese Medicinal Materials 35(4):656−57(in Chinese)

[37]

Zhang K, Lu Z, Wang Q, Liu F, Wang M, et al. 2022. Pharmacokinetic Study of Four Major Bioactive Components of Liandan Xiaoyan Formula in Ulcerative Colitis and Control Rats Using UPLC-MS/MS. Frontiers in Pharmacology 13:936846

doi: 10.3389/fphar.2022.936846
[38]

Tian G, Chen M. 2009. Determination of dehydrographolide and andrographolide in Lianzhi Xiaoyan tablets by RP-HPLC. Jiangxi Journal of Traditional Chinese Medicine 40(9):72−73(in Chinese)

[39]

Lin T, Cheng L. 2010. Study on the quality standard of Lianzhi Xiaoyan Capsule. Chinese Traditional Patent Medicine 32(12):2096−100(in Chinese)

doi: 10.3969/j.issn.1001-1528.2010.12.019
[40]

Zeng R, Yan M, Liu J. 2006. Determination of andrographolide and dehydrated andrographolide in Honggencao Capsules by HPLC. Journal of TCM University of Hunan 26(4):25−26+28(in Chinese)

doi: 10.3969/j.issn.1674-070X.2006.04.009
[41]

Wu Y, Huang X. 2006. Determination of andrographolide and dehydroandrographolide in Houshuning Capsules. Lishizhen Medicine and Materia Medica Research 17(12):2458−59(in Chinese)

doi: 10.3969/j.issn.1008-0805.2006.12.021
[42]

Li L, Tang Z, Liang Y, Wu K, Yu J, et al. 2021. Determination of Qianxi Tablet and its effect on ulcerative colitis induced by DSS. Lishizhen Medicine and Materia Medica Research 32(5):1075−78(in Chinese)

doi: 10.3969/j.issn.1008-0805.2021.05.14
[43]

Zhang J, Qiao Y, Gao X, Zhang Q, Ma Q, et al. 2013. Rapid recognition and identification of chemical constituents in Qinghuo Zhimai tablets by SPE-HPLC-ESI-MS(n). China Journal of Chinese Materia Medica 38:186−92(in Chinese)

[44]

Su J, Liu Y. 2016. Establishment of HPLC chromatogram of Qinghuo Zhimai Capsule and determination of three components. Chinese Traditional Patent Medicine 38(4):810−15(in Chinese)

[45]

Wang M, Liu F, Yao Y, Zhang Q, Lu Z, et al. 2021. Network pharmacology-based mechanism prediction and pharmacological validation of Xiaoyan Lidan formula on attenuating alpha-naphthylisothiocyanate induced cholestatic hepatic injury in rats. Journal of Ethnopharmacology 270:113816

doi: 10.1016/j.jep.2021.113816
[46]

Liang Y, Nong X, Wei M. 2007. Study on quality standard of Xinxue Tablets. Lishizhen Medicine and Materia Medica Research 18(8):1953−54(in Chinese)

doi: 10.3969/j.issn.1008-0805.2007.08.083
[47]

Jia J, Lin Q. 2006. HPLC analysis of andrographolide and 14-dexo-11,12-didehydroandrographolide in Xinxue granule. Journal of Guangdong Pharmaceutical University 22(3):272−74(in Chinese)

doi: 10.3969/j.issn.1006-8783.2006.03.016
[48]

Ding H. 2007. Determination of dehydroandrographolide in Yanhou Xiaoyan Pills by HPLC. Research and Practice on Chinese Medicines 21(3):38−39(in Chinese)

doi: 10.3969/j.issn.1673-6427.2007.03.012
[49]

Yu Q, Shi Y, Shu C, Ding X, Zhu S, et al. 2021. Andrographolide Inhibition of Th17-Regulated Cytokines and JAK1/STAT3 Signaling in OVA-Stimulated Asthma in Mice. Evidence-Based Complementary And Alternative Medicine 2021:6862073

doi: 10.1155/2021/6862073
[50]

Gupta S, Mishra KP, Kumar B, Singh SB, Ganju L. 2020. Andrographolide attenuates complete freund's adjuvant induced arthritis via suppression of inflammatory mediators and pro-inflammatory cytokines. Journal of Ethnopharmacology 261:113022

doi: 10.1016/j.jep.2020.113022
[51]

Lo C, Lii C, Hong J, Chuang W, Yang Y, et al. 2021. Andrographolide inhibits IL-1β release in bone marrow-derived macrophages and monocyte infiltration in mouse knee joints induced by monosodium urate. Toxicology And Applied Pharmacology 410:115341

doi: 10.1016/j.taap.2020.115341
[52]

Chen S, Luo Z, Chen X. 2020. Andrographolide mitigates cartilage damage via miR-27-3p-modulated matrix metalloproteinase13 repression. The Journal of Gene Medicine 22(8):e3187

doi: 10.1002/jgm.3187
[53]

Kim N, Lertnimitphun P, Jiang Y, Tan H, Zhou H, et al. 2019. Andrographolide inhibits inflammatory responses in LPS-stimulated macrophages and murine acute colitis through activating AMPK. Biochemical Pharmacology 170:113646

doi: 10.1016/j.bcp.2019.113646
[54]

Mitra Ghosh T, Kansom T, Mazumder S, Davis J, Alnaim AS, et al. 2022. The andrographolide analogue 3A.1 synergizes with taxane derivatives in aggressive metastatic prostate cancers by upregulation of heat shock proteins and downregulation of MAT2A-mediated cell migration and invasion. The Journal Of Pharmacology And Experimental Therapeutics 380:180−201

doi: 10.1124/jpet.121.000898
[55]

Li J, Huang L, He Z, Chen M, Ding Y, et al. 2021. Andrographolide Suppresses the Growth and Metastasis of Luminal-Like Breast Cancer by Inhibiting the NF-κB/miR-21-5p/PDCD4 Signaling Pathway. Frontiers In Cell and Developmental Biology 9:643525

doi: 10.3389/fcell.2021.643525
[56]

Beesetti SL, Jayadev M, Subhashini GV, Mansour L, Alwasel S, et al. 2019. Andrographolide as a therapeutic agent against breast and ovarian cancers. Open Life Sciences 14:462−69

doi: 10.1515/biol-2019-0052
[57]

Pasha A, Kumbhakar DV, Doneti R, Kumar K, Dharmapuri G, et al. 2021. Inhibition of inducible nitric oxide synthase (iNOS) by andrographolide and in vitro evaluation of its antiproliferative and proapoptotic effects on cervical cancer. Oxidative Medicine and Cellular Longevity 2021:6692628

doi: 10.1155/2021/6692628
[58]

Khan I, Mahfooz S, Saeed M, Ahmad I, Ansari IA. 2021. Andrographolide inhibits proliferation of colon cancer SW-480 cells via downregulating notch signaling pathway. Anti-Cancer Agents in Medicinal Chemistry 21:487−97

doi: 10.2174/1871520620666200717143109
[59]

Khan I, Mahfooz S, Ansari IA. 2020. Antiproliferative and apoptotic properties of andrographolide against human colon cancer DLD1 cell line. Endocrine Metabolic & Immune Disorders-Drug Targets 20:930−42

doi: 10.2174/1871530319666191125111920
[60]

Li Y, Xiang LL, Miao JX, Miao MS, Wang C. 2021. Protective effects of andrographolide against cerebral ischemia-reperfusion injury in mice. International Journal of Molecular Medicine 48(4):186

doi: 10.3892/ijmm.2021.5019
[61]

Shu J, Huang R, Tian Y, Liu Y, Zhu R, et al. 2020. Andrographolide protects against endothelial dysfunction and inflammatory response in rats with coronary heart disease by regulating PPAR and NF-κB signaling pathways. Annals of Palliative Medicine 9:1965−75

doi: 10.21037/apm-20-960
[62]

Alipanah-Moghadam R, Mehri A, Manafi F, Malekzadeh V, Nemati A, et al. 2021. Andrographolide, a novel inducer of apelin gene expression. Journal of Ethnopharmacology 280:114487

doi: 10.1016/j.jep.2021.114487
[63]

Su H, Mo J, Ni J, Ke H, Bao T, et al. 2020. Andrographolide exerts antihyperglycemic effect through strengthening intestinal barrier function and increasing microbial composition of Akkermansia muciniphila. Oxidative Medicine and Cellular Longevity 2020:6538930

doi: 10.1155/2020/6538930
[64]

Syukri Y, Taher M, Martien R, Lukitaningsih E, Nugroho AE, et al. 2021. Self-nanoemulsifying delivery of andrographolide: Ameliorating islet beta cells and inhibiting adipocyte differentiation. Advanced Pharmaceutical Bulletin 11:171−80

doi: 10.34172/apb.2021.018
[65]

Patel R, Kaur K, Singh S. 2021. Protective effect of andrographolide against STZ induced Alzheimer's disease in experimental rats: possible neuromodulation and Aβ(1-42) analysis. Inflammopharmacology 29:1157−68

doi: 10.1007/s10787-021-00843-6
[66]

Lindsay CB, Zolezzi JM, Rivera DS, Cisternas P, Bozinovic F, et al. 2020. Andrographolide reduces neuroinflammation and oxidative stress in aged Octodon degus. Molecular Neurobiology 57:1131−45

doi: 10.1007/s12035-019-01784-6
[67]

Zhang J, Zheng Y, Zhao Y, Zhang Y, Liu Y, et al. 2021. Andrographolide ameliorates neuroinflammation in APP/PS1 transgenic mice. International Immunopharmacology 96:107808

doi: 10.1016/j.intimp.2021.107808
[68]

Zhang JJ, Gao TT, Wang Y, Wang JL, Guan W, et al. 2019. Andrographolide Exerts Significant Antidepressant-Like Effects Involving the Hippocampal BDNF System in Mice. International Journal Of Neuropsychopharmacology 22:585−600

doi: 10.1093/ijnp/pyz032
[69]

Song Y, Wu X, Yang D, Fang F, Meng L, et al. 2020. Protective Effect of Andrographolide on Alleviating Chronic Alcoholic Liver Disease in Mice by Inhibiting Nuclear Factor Kappa B and Tumor Necrosis Factor Alpha Activation. Journal of Medicinal Food 23:409−15

doi: 10.1089/jmf.2019.4471
[70]

Li J, Feng M, Sun R, Li Z, Hu L, et al. 2020. Andrographolide ameliorates bleomycin-induced pulmonary fibrosis by suppressing cell proliferation and myofibroblast differentiation of fibroblasts via the TGF-β1-mediated Smad-dependent and -independent pathways. Toxicology Letters 321:103−13

doi: 10.1016/j.toxlet.2019.11.003
[71]

Gao J, Peng S, Shan X, Deng G, Shen L, et al. 2019. Inhibition of AIM2 inflammasome-mediated pyroptosis by Andrographolide contributes to amelioration of radiation-induced lung inflammation and fibrosis. Cell Death & Disease 10:957

doi: 10.1038/s41419-019-2195-8
[72]

Banerjee A, Czinn SJ, Reiter RJ, Blanchard TG. 2020. Crosstalk between endoplasmic reticulum stress and anti-viral activities: A novel therapeutic target for COVID-19. Life Sciences 255:117842

doi: 10.1016/j.lfs.2020.117842
[73]

General Office Of The National Health Commission PRC, Comprehensive Department Of The National Administration Of Traditional Chinese Medicine PRC. 2023. Diagnosis and Treatment Protocol for Novel Coronavirus Pneumonia (Trial Version 10). Infectious Disease Information 36(1):18−25

doi: 10.3969/j.issn.1007-8134.2023.01.02
[74]

Tantikanlayaporn D, Wichit P, Suksen K, Suksamrarn A, Piyachaturawat P. 2020. Andrographolide modulates OPG/RANKL axis to promote osteoblastic differentiation in MC3T3-E1 cells and protects bone loss during estrogen deficiency in rats. Biomedicine & Pharmacotherapy 131:110763

doi: 10.1016/j.biopha.2020.110763
[75]

Hassan WRM, Basir R, Ali AH, Embi N, Sidek HM. 2019. Anti-malarial and cytokine-modulating effects of andrographolide in a murine model of malarial infection. Tropical Biomedicine 36:776−91

[76]

Ibraheem ZO, Majid RA, Sidek HM, Noor SM, Yam MF, et al. 2019. In vitro antiplasmodium and chloroquine resistance reversal effects of andrographolide. Evidence-Based Complementary And Alternative Medicine 2019:7967980

doi: 10.1155/2019/7967980
[77]

Shao J, Sun Y, Liu H, Wang Y. 2021. Pathway elucidation and engineering of plant-derived diterpenoids. Current Opinion in Biotechnology 69:10−16

doi: 10.1016/j.copbio.2020.08.007
[78]

Englund E, Andersen-Ranberg J, Miao R, Hamberger B, Lindberg P. 2015. Metabolic engineering of Synechocystis sp. PCC 6803 for production of the plant diterpenoid manoyl oxide. ACS Synthetic Biology 4:1270−78

doi: 10.1021/acssynbio.5b00070
[79]

Murthy HN, Dalawai D. 2021. Biotechnological production of diterpenoid lactones from cell and organ cultures of Andrographis paniculata. Applied Microbiology and Biotechnology 105:7683−94

doi: 10.1007/s00253-021-11599-y
[80]

Misra RC, Garg A, Roy S, Chanotiya CS, Vasudev PG, et al. 2015. Involvement of an ent-copalyl diphosphate synthase in tissue-specific accumulation of specialized diterpenes in Andrographis paniculata. Plant Science 240:50−64

doi: 10.1016/j.plantsci.2015.08.016
[81]

Srivastava P, Garg A, Misra RC, Chanotiya CS, Ghosh S. 2021. UGT86C11 is a novel plant UDP-glycosyltransferase involved in labdane diterpene biosynthesis. Journal of Biological Chemistry 297:101045

doi: 10.1016/j.jbc.2021.101045
[82]

Nyeem A, Mannan A, Nuruzzaman M, Kamrujjaman K, Das S. 2017. Indigenous king of bitter (Andrographis paniculata): A review. Journal of Medicinal Plants Studies 5(2):318−24

[83]

Purkayastha J, Sugla T, Paul A, Solleti S, Sahoo L. 2008. Rapid in vitro multiplication and plant regeneration from nodal explants of Andrographis paniculata: a valuable medicinal plant. In Vitro Cellular & Developmental Biology - Plant 44:442−47

doi: 10.1007/s11627-008-9156-8
[84]

Forman V, Bjerg-Jensen N, Dyekjær JD, Møller BL, Pateraki I. 2018. Engineering of CYP76AH15 can improve activity and specificity towards forskolin biosynthesis in yeast. Microbial Cell Factories 17:181

doi: 10.1186/s12934-018-1027-3
[85]

Ajikumar PK, Xiao WH, Tyo KEJ, Wang Y, Simeon F, et al. 2010. Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science 330:70−4

doi: 10.1126/science.1191652
[86]

Mao Y, Ma Y, Chen T, Ma X, Xu Y, et al. 2020. Functional integration of two CYP450 genes involved in biosynthesis of tanshinones for improved diterpenoid production by synthetic biology. Acs Synthetic Biology 9:1763−70

doi: 10.1021/acssynbio.0c00136
[87]

Cao X, Yu W, Chen Y, Yang S, Zhao ZK, et al. 2023. Engineering yeast for high-level production of diterpenoid sclareol. Metabolic Engineering 75:19−28

doi: 10.1016/j.ymben.2022.11.002
[88]

Leonard E, Ajikumar PK, Thayer K, Xiao WH, Mo JD, et al. 2010. Combining metabolic and protein engineering of a terpenoid biosynthetic pathway for overproduction and selectivity control. Proceedings of the National Academy of Sciences of the United States of America 107:13654−59

doi: 10.1073/pnas.1006138107
[89]

Hu T, Zhou J, Tong Y, Su P, Li X, et al. 2020. Engineering chimeric diterpene synthases and isoprenoid biosynthetic pathways enables high-level production of miltiradiene in yeast. Metabolic Engineering 60:87−96

doi: 10.1016/j.ymben.2020.03.011
[90]

Andersen-Ranberg J, Kongstad KT, Nielsen MT, Jensen NB, Pateraki I, et al. 2016. Expanding the landscape of diterpene structural diversity through stereochemically controlled combinatorial biosynthesis. Angewandte Chemie (International Edition) 55:2142−46

doi: 10.1002/anie.201510650
[91]

Forman V, Callari R, Folly C, Heider H, Hamberger B. Forman V, Callari R, Folly C, Heider H, Hamberger B. Production of putative diterpene carboxylic acid intermediates of triptolide in yeast. Molecules 22(6):981

doi: 10.3390/molecules22060981
[92]

Zhou YJ, Gao W, Rong Q, Jin G, Chu H, et al. 2012. Modular pathway engineering of diterpenoid synthases and the mevalonic acid pathway for miltiradiene production. Journal of the American Chemical Society 134:3234−41

doi: 10.1021/ja2114486
[93]

Wong J, de Rond T, D'Espaux L, van der Horst C, Dev I, et al. 2018. High-titer production of lathyrane diterpenoids from sugar by engineered Saccharomyces cerevisiae. Metabolic Engineering 45:142−48

doi: 10.1016/j.ymben.2017.12.007
[94]

Zhang Y, Gao J, Ma L, Tu L, Hu T, et al. 2023. Tandemly duplicated CYP82Ds catalyze 14-hydroxylation in triptolide biosynthesis and precursor production in Saccharomyces cerevisiae. Nature Communications 14:875

doi: 10.1038/s41467-023-36353-y
[95]

Pu X, He C, Yang Y, Wang W, Hu K, et al. 2020. In vivo production of five crocins in the engineered Escherichia coli. Acs Synthetic Biology 9:1160−68

doi: 10.1021/acssynbio.0c00039
[96]

Yang T, Zhang J, Ke D, Yang W, Tang M, et al. 2019. Hydrophobic recognition allows the glycosyltransferase UGT76G1 to catalyze its substrate in two orientations. Nature Communications 10:3214

doi: 10.1038/s41467-019-11154-4
[97]

Liu Z, Li J, Sun Y, Zhang P, Wang Y. 2020. Structural Insights into the Catalytic Mechanism of a Plant Diterpene Glycosyltransferase SrUGT76G1. Plant Communications 1:100004

doi: 10.1016/j.xplc.2019.100004
[98]

Pandey G, Rao C. 2018. Andrographolide: its pharmacology, natural bioavailability and current approaches to increase its content in Andrographis paniculata. International Journal of Complementary & Alternative Medicine 11(5):355−60

doi: 10.15406/ijcam.2018.11.00425
[99]

Nett RS, Lau W, Sattely ES. 2020. Discovery and engineering of colchicine alkaloid biosynthesis. Nature 584:148−53

doi: 10.1038/s41586-020-2546-8