[1] |
Wijayawardene NN, Hyde KD, Dai DQ, Sánchez-García M, Goto BT, et al. 2022. Outline of Fungi and fungus-like taxa-2021. Mycosphere 13:53−453 doi: 10.5943/mycosphere/13/1/2 |
[2] |
Wijayawardene N, Hyde KD, Al-Ani LKT, Tedersoo L, Haelewaters D, et al. 2020. Outline of Fungi and fungus-like taxa. Mycosphere 11:1160−456 doi: 10.5943/mycosphere/11/1/8 |
[3] |
Voigt K, James TY, Kirk PM, Santiago ALCM de A, Waldman B, et al. 2021. Early-diverging fungal phyla: taxonomy, species concept, ecology, distribution, anthropogenic impact, and novel phylogenetic proposals. Fungal Diversity 109:59−98 doi: 10.1007/s13225-021-00480-y |
[4] |
Hoffmann K, Voigt K. 2009. Absidia parricida plays a dominant role in biotrophic fusion parasitism among mucoralean fungi (Zygomycetes): Lentamyces, a new genus for A. parricida and A. zychae. Plant Biology 11:537−54 doi: 10.1111/j.1438-8677.2008.00145.x |
[5] |
Hoffmann K, Walther G, Voigt K. 2009. Mycocladus vs. Lichtheimia: a correction (Lichtheimiaceae fam. nov., Mucorales, Mucoromycotina). Mycological Research 113:277−8 |
[6] |
Hoffmann K. 2010 Identification of the genus Absidia (Mucorales, Zygomycetes): a comprehensive taxonomic revision. In Molecular identification of fungi, eds. Gherbawy Y, Voigt K. Berlin, Heidelberg: Springer. pp. 439-60. https://doi.org/10.1007/978-3-642-05042-8_19 |
[7] |
Hoffmann K, Discher S, Voigt K. 2007. Revision of the genus Absidia (Mucorales, Zygomycetes) based on physiological, phylogenetic, and morphological characters; thermotolerant Absidia spp. form a coherent group, Mycocladiaceae fam. nov. Mycological Research 111:1169−83 doi: 10.1016/j.mycres.2007.07.002 |
[8] |
Zhang T, Yu Y, Zhu H, Yang S, Yang T, et al. 2018. Absidia panacisoli sp. nov., isolated from rhizosphere of Panax notoginseng. International Journal of Systematic and Evolutionary Microbiology 68:2468−72 doi: 10.1099/ijsem.0.002857 |
[9] |
Hurdeal VG, Gentekaki E, Lee HB, Jeewon R, Hyde KD, et al. 2021. Mucoralean fungi in Thailand: Novel species of Absidia from tropical forest soil. Cryptogamie, Mycologie 42:39−61 doi: 10.5252/cryptogamie-mycologie2021v42a4 |
[10] |
Zong T, Zhao H, Liu X, Ren L, Zhao C, et al. 2021. Taxonomy and phylogeny of four new species in Absidia (Cunninghamellaceae, Mucorales) from China. Frontiers in Microbiology 4:12 doi: 10.3389/fmicb.2021.677836 |
[11] |
Lima DX, Cordeiro TRL, De Souza CAF, De Oliveira RJV, Lee HB, et al. 2020. Morphological and molecular evidence for two new species of Absidia from Neotropic soil. Phytotaxa 446:61−71 doi: 10.11646/phytotaxa.446.1.8 |
[12] |
Zhao H, Nie Y, Zong T, Dai Y, Liu X. 2022. Three new species of Absidia (Mucoromycota) from China based on phylogeny, morphology and physiology. Diversity 2:132 doi: 10.3390/d14020132 |
[13] |
Cordeiro TRL, Nguyen TTT, Lima DX, Da Silva SBG, De Lima CF, et al. 2020. Two new species of the industrially relevant genus Absidia (Mucorales) from soil of the Brazilian Atlantic Forest. Acta Botanica Brasilica 34:549−58 doi: 10.1590/0102-33062020abb0040 |
[14] |
Senanayake IC, Rathnayaka AR, Marasinghe DS, Calabon MS, Gentekaki E, et al. 2020. Morphological approaches in studying fungi: collection, examination, isolation, sporulation and preservation. Mycosphere 11:2678−754 doi: 10.5943/mycosphere/11/1/20 |
[15] |
White TJ, Bruns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA Genes for phylogenetics. In PCR Protocols, eds. Innis MA, Gelfand DH, Sninsky JJ, White TJ. Academic Press. pp. 315–22. https://doi.org/10.1016/B978-0-12-372180-8.50042-1 |
[16] |
Vilgalys R, Hester M. 1990. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172:4238−46 doi: 10.1128/jb.172.8.4238-4246.1990 |
[17] |
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. Journal of Molecular Biology 215:403−10 doi: 10.1016/S0022-2836(05)80360-2 |
[18] |
Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. 2009. TrimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25:1972−73 doi: 10.1093/bioinformatics/btp348 |
[19] |
Miller MA, Pfeiffer W, Schwartz T. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. 2010 Gateway Computing Environments Workshop (GCE), New Orleans, LA, USA, 14 November 2010. pp. 1–8. https://doi.org/10.1109/GCE.2010.5676129 |
[20] |
Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. 2015. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32:268−74 doi: 10.1093/molbev/msu300 |
[21] |
Huelsenbeck JP, Ronquist F. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754−55 doi: 10.1093/bioinformatics/17.8.754 |
[22] |
Jeewon R, Hyde KD. 2016. Establishing species boundaries and new taxa among fungi: Recommendations to resolve taxonomic ambiguities. Mycosphere 7:1669−77 doi: 10.5943/mycosphere/7/11/4 |
[23] |
Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, et al. 2012. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. PNAS 109:6241−46 doi: 10.1073/pnas.1117018109 |