[1]

Boyer J, Liu RH. 2004. Apple phytochemicals and their health benefits. Nutrition Journal 3:5

doi: 10.1186/1475-2891-3-5
[2]

Tsao R, Yang R, Young JC, Zhu H. 2003. Polyphenolic profiles in eight apple cultivars using high-performance liquid chromatography (HPLC). Journal of Agricultural and Food Chemistry 51:6347−53

doi: 10.1021/jf0346298
[3]

Huber GM, Rupasinghe HPV. 2009. Phenolic profiles and antioxidant properties of apple skin extracts. Journal of Food Science 74:C693−C700

doi: 10.1111/j.1750-3841.2009.01356.x
[4]

Sethi S, Joshi A, Arora B, Bhowmik A, Sharma RR, et al. 2020. Significance of FRAP, DPPH, and CUPRAC assays for antioxidant activity determination in apple fruit extracts. European Food Research and Technology 246:591−98

doi: 10.1007/s00217-020-03432-z
[5]

López-Alarcón C, Denicola A. 2013. Evaluating the antioxidant capacity of natural products: a review on chemical and cellular-based assays. Analytica Chimica Acta 763:1−10

doi: 10.1016/j.aca.2012.11.051
[6]

Tsao R, Yang R. 2003. Optimization of a new mobile phase to know the complex and real polyphenolic composition: towards a total phenolic index using high-performance liquid chromatography. Journal of Chromatography A 1018:29−40

doi: 10.1016/j.chroma.2003.08.034
[7]

Zhou K, Hu L, Liu B, Li Y, Gong X, et al. 2018. Identification of apple fruits rich in health-promoting dihydrochalcones by comparative assessment of cultivated and wild accessions. Scientia Horticulturae 233:38−46

doi: 10.1016/j.scienta.2018.01.042
[8]

Gutierrez BL, Zhong GY, Brown SK. 2018. Genetic diversity of dihydrochalcone content in Malus germplasm. Genetic Resources and Crop Evolution 65:1485−502

doi: 10.1007/s10722-018-0632-7
[9]

Awad MA, de Jager A, van Westing LM. 2000. Flavonoid and chlorogenic acid levels in apple fruit: characterisation of variation. Scientia Horticulturae 83:249−63

doi: 10.1016/S0304-4238(99)00124-7
[10]

Wojdyło A, Oszmiański J, Laskowski P. 2008. Polyphenolic compounds and antioxidant activity of new and old apple varieties. Journal of Agricultural and Food Chemistry 56:6520−30

doi: 10.1021/jf800510j
[11]

Watts S, Migicovsky Z, McClure KA, Yu CHJ, Amyotte B, et al. 2021. Quantifying apple diversity: a phenomic characterization of Canada's Apple Biodiversity Collection. PLANTS, PEOPLE, PLANET 3:747−60

doi: 10.1002/ppp3.10211
[12]

Ali Khan S, Chibon PY, de Vos RCH, Schipper BA, Walraven E, et al. 2012. Genetic analysis of metabolites in apple fruits indicates an mQTL hotspot for phenolic compounds on linkage group 16. Journal of Experimental Botany 63:2895−908

doi: 10.1093/jxb/err464
[13]

McClure KA, Gong Y, Song J, Vinqvist-Tymchuk M, Campbell Palmer L, et al. 2019. Genome-wide association studies in apple reveal loci of large effect controlling apple polyphenols. Horticulture Research 6:107

doi: 10.1038/s41438-019-0190-y
[14]

Verdu CF, Guyot S, Childebrand N, Bahut M, Celton JM, et al. 2014. QTL analysis and candidate gene mapping for the polyphenol content in cider apple. PLoS ONE 9:e107103

doi: 10.1371/journal.pone.0107103
[15]

Takos MA, Robinson PS, Walker RA. 2006. Transcriptional regulation of the flavonoid pathway in the skin of dark-grown 'Cripps' Red' apples in response to sunlight. The Journal of Horticultural Science and Biotechnology 81:735−44

doi: 10.1080/14620316.2006.11512131
[16]

Henry-Kirk RA, McGhie TK, Andre CM, Hellens RP, Allan AC. 2012. Transcriptional analysis of apple fruit proanthocyanidin biosynthesis. Journal of Experimental Botany 63:5437−50

doi: 10.1093/jxb/ers193
[17]

Elejalde-Palmett C, Billet K, Lanoue A, De Craene JO, Glévarec G, et al. 2019. Genome-wide identification and biochemical characterization of the UGT88F subfamily in Malus x domestica Borkh. Phytochemistry 157:135−44

doi: 10.1016/j.phytochem.2018.10.019
[18]

Yuri JA, Maldonado FJ, Razmilic I, Neira A, Quilodran Á, et al. 2012. Concentrations of total phenols and antioxidant activity in apple do not differ between conventional and organic orchard management. Journal of Food, Agriculture & Environment 10:207−16

[19]

Kevers C, Pincemail J, Tabart J, Defraigne JO, Dommes J. 2011. Influence of cultivar, harvest time, storage conditions, and peeling on the antioxidant capacity and phenolic and ascorbic acid contents of apples and pears. Journal of Agricultural and Food Chemistry 59:6165−71

doi: 10.1021/jf201013k
[20]

Alseekh S, Fernie AR. 2018. Metabolomics 20 years on: what have we learned and what hurdles remain? The Plant Journal 94:933−42

doi: 10.1111/tpj.13950
[21]

Bars-Cortina D, Macià A, Iglesias I, Romero MP, Motilva MJ. 2017. Phytochemical profiles of new red-fleshed apple varieties compared with traditional and new white-fleshed varieties. Journal of Agricultural and Food Chemistry 65:1684−96

doi: 10.1021/acs.jafc.6b02931
[22]

Schrimpe-Rutledge AC, Codreanu SG, Sherrod SD, McLean JA. 2016. Untargeted metabolomics strategies—challenges and emerging directions. Journal of the American Society for Mass Spectrometry 27:1897−905

doi: 10.1007/s13361-016-1469-y
[23]

Carvalho E, Franceschi P, Feller A, Herrera L, Palmieri L, et al. 2016. Discovery of A-type procyanidin dimers in yellow raspberries by untargeted metabolomics and correlation based data analysis. Metabolomics 12:144

doi: 10.1007/s11306-016-1090-x
[24]

Paudel JR, Davidson C, Song J, Maxim I, Aharoni A, et al. 2017. Pathogen and pest responses are altered due to RNAi-mediated knockdown of GLYCOALKALOID METABOLISM 4 in Solanum tuberosum. MPMI 30:876−85

doi: 10.1094/MPMI-02-17-0033-R
[25]

Gong Y, Song J, Campbell Palmer L, Vinqvist-Tymchuk M, Fillmore S, et al. 2021. Tracking the development of the superficial scald disorder and effects of treatments with diphenylamine and 1-MCP using an untargeted metabolomic approach in apple fruit. Food Chemistry: Molecular Sciences 2:100022

doi: 10.1016/j.fochms.2021.100022
[26]

Singleton VL, Orthofer R, Lamuela-Raventós RM. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology 299:152−78

doi: 10.1016/S0076-6879(99)99017-1
[27]

Benzie IFF, Strasin JJ. 1999. Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods in Enzymology 299:15−27

doi: 10.1016/S0076-6879(99)99005-5
[28]

De Vos RCH, Schipper B, Hall RD. 2012. High-performance liquid chromatography–mass spectrometry analysis of plant metabolites in Brassicaceae. In Plant Metabolomics: Methods and Protocols, eds. Hardy NW, Hall RD. Totowa, NJ: Humana Press. 111−28. https://doi.org/10.1007/978-1-61779-594-7_8

[29]

Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, et al. 2007. Proposed minimum reporting standards for chemical analysis. Metabolomics 3:211−21

doi: 10.1007/s11306-007-0082-2
[30]

De Mendiburu F. 2021. Package 'agricolae' version 1.3-5. https://cran.r-project.org/web/packages/agricolae/index.html.

[31]

Lê S, Josse J, Husson F. 2008. FactoMineR: an R Package for multivariate analysis. Journal of Statistical Software 25:1−18

doi: 10.18637/jss.v025.i01
[32]

Harrell FE, Dupont C. 2021. Harrell Miscellaneous 'Hmisc' R Package v. 4.6. https://rdrr.io/github/harrelfe/Hmisc/

[33]

Yu CHJ, Migicovsky Z, Song J, Rupasinghe HPV. 2023. (Poly)phenols of apples contribute to in vitro antidiabetic properties: assessment of Canada's Apple Biodiversity Collection. PLANTS, PEOPLE, PLANET 5:225−40

doi: 10.1002/ppp3.10315
[34]

Thompson-Witrick KA, Goodrich KM, Neilson AP, Hurley EK, Peck GM, et al. 2014. Characterization of the polyphenol composition of 20 cultivars of cider, processing, and dessert apples (Malus × domestica Borkh.) grown in Virginia. Journal of Agricultural and Food Chemistry 62:10181−91

doi: 10.1021/jf503379t
[35]

Liao L, Vimolmangkang S, Wei G, Zhou H, Korban SS, et al. 2015. Molecular characterization of genes encoding leucoanthocyanidin reductase involved in proanthocyanidin biosynthesis in apple. Frontiers in Plant Science 6:243

doi: 10.3389/fpls.2015.00243
[36]

Chagné D, Krieger C, Rassam M, Sullivan M, Fraser J, et al. 2012. QTL and candidate gene mapping for polyphenolic composition in apple fruit. BMC Plant Biology 12:12

doi: 10.1186/1471-2229-12-12
[37]

Miranda S, Lagrèze J, Knoll AS, Angeli A, Espley RV, et al. 2022. De novo transcriptome assembly and functional analysis reveal a dihydrochalcone 3-hydroxylase(DHC3H) of wild Malus species that produces sieboldin in vivo. Frontiers in Plant Science 13:1072765

doi: 10.3389/fpls.2022.1072765
[38]

Tsao R, Yang R, Xie S, Sockovie E, Khanizadeh S. 2005. Which polyphenolic compounds contribute to the total antioxidant activities of apple? Journal of Agricultural and Food Chemistry 53:4989−95

[39]

Hoffmann L, Besseau S, Geoffroy P, Ritzenthaler C, Meyer D, et al. 2004. Silencing of hydroxycinnamoyl-coenzyme A shikimate/quinate hydroxycinnamoyltransferase affects phenylpropanoid biosynthesis. The Plant Cell 16:1446−65

doi: 10.1105/tpc.020297
[40]

Liao L, Zhang W, Zhang B, Cai Y, Gao L, et al. 2021. Evaluation of chlorogenic acid accumulation in cultivated and wild apples. Journal of Food Composition and Analysis 104:104156

doi: 10.1016/j.jfca.2021.104156
[41]

Forkmann G. 1991. Flavonoids as flower pigments: the formation of the natural spectrum and its extension by genetic engineering. Plant Breeding 106:1−26

doi: 10.1111/j.1439-0523.1991.tb00474.x
[42]

Han Y, Vimolmangkang S, Soria-Guerra RE, Rosales-Mendoza S, Zheng D, et al. 2010. Ectopic expression of apple F3′H genes contributes to anthocyanin accumulation in the Arabidopsis tt7 mutant grown under nitrogen stress. Plant Physiology 153:806−20

doi: 10.1104/pp.109.152801
[43]

Petkovska A, Gjamovski V, Stanoeva JP, Stefova M. 2017. Characterization of the polyphenolic profiles of peel, flesh and leaves of Malus domestica cultivars using UHPLC-DAD-HESI-MSn. Natural Product Communications 12:35−42

doi: 10.1177/1934578X170120
[44]

Chaleckis R, Meister I, Zhang P, Wheelock CE. 2019. Challenges, progress and promises of metabolite annotation for LC–MS-based metabolomics. Current Opinion in Biotechnology 55:44−50

doi: 10.1016/j.copbio.2018.07.010
[45]

Rogachev I, Aharoni A. 2012. UPLC-MS-based metabolite analysis in tomato. In Plant Metabolomics. Methods in Molecular Biology, eds. Hardy N, Hall R. Totowa, NJ: Humana Press. 860: 129−44. https://doi.org/10.1007/978-1-61779-594-7_9

[46]

Arbulu M, Sampedro MC, Gómez-Caballero A, Goicolea MA, Barrio RJ. 2015. Untargeted metabolomic analysis using liquid chromatography quadrupole time-of-flight mass spectrometry for non-volatile profiling of wines. Analytica Chimica Acta 858:32−41

doi: 10.1016/j.aca.2014.12.028
[47]

Kanehisa M, Goto S. 2000. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research 28:27−30

doi: 10.1093/nar/28.1.27