[1] |
Kobes M, Helsloot I, De Vries B, Post JG. 2010. Building safety and human behaviour in fire: A literature review. Fire Safety Journal 45:1−11 doi: 10.1016/j.firesaf.2009.08.005 |
[2] |
Wang Z, Li T. 2022. A lightweight CNN model based on GhostNet. Computational Intelligence and Neuroscience 2022:8396550 doi: 10.1155/2022/8396550 |
[3] |
Drysdale D. 2011. An Introduction to Fire Dynamics. 3rd Edition. UK: John Wiley & Sons. 576 pp. https://doi.org/10.1002/9781119975465 |
[4] |
Liu Z, Kim AK. 2003. Review of recent developments in fire detection technologies. Journal of Fire Protection Engineering 13:129−51 doi: 10.1177/1042391503013002003 |
[5] |
Gaur A, Singh A, Kumar A, Kulkarni KS, Lala S, et al. 2019. Fire sensing technologies: A review. IEEE Sensors Journal 19:3191−202 doi: 10.1109/JSEN.2019.2894665 |
[6] |
Röck F, Barsan N, Weimar U. 2008. Electronic nose: current status and future trends. Chemical Reviews 108:705−25 doi: 10.1021/cr068121q |
[7] |
Davies ER. 2004. Machine vision: theory, algorithms, practicalities. 3rd Edition. San Francisco, USA: Academic Press, Elsevier. https://doi.org/10.1016/C2013-0-10565-X |
[8] |
Ma J, Sun DW, Qu JH, Liu D, Pu H, et al. 2016. Applications of computer vision for assessing quality of agri-food products: a review of recent research advances. Critical Reviews In Food Science And Nutrition 56:113−27 doi: 10.1080/10408398.2013.873885 |
[9] |
Szeliski R. 2022. Computer Vision: Algorithms and Applications. Cham, Switzerland: Springer Nature. 925 pp. https://doi.org/10.1007/978-3-030-34372-9 |
[10] |
Zhong Z, Wang M, Shi Y, Gao W. 2018. A convolutional neural network-based flame detection method in video sequence. Signal, Image and Video Processing 12:1619−27 doi: 10.1007/s11760-018-1319-4 |
[11] |
Zhang L, Wang M, Ding Y, Bu X. 2023. MS-FRCNN: A Multi-Scale Faster RCNN Model for Small Target Forest Fire Detection. Forests 14:616 doi: 10.3390/f14030616 |
[12] |
Yu L, Liu J. 2020. Flame image recognition algorithm based on improved Mask R-CNN. Computer Engineering and Applications 56:194−98 doi: 10.3778/j.issn.1002-8331.2006-0194 |
[13] |
Abdusalomov A, Baratov N, Kutlimuratov A, Whangbo TK. 2021. An improvement of the fire detection and classification method using YOLOv3 for surveillance systems. Sensors 21:6519 doi: 10.3390/s21196519 |
[14] |
Zheng H, Duan J, Dong Y, Liu Y. 2023. Real-time fire detection algorithms running on small embedded devices based on MobileNetV3 and YOLOv4. Fire Ecology 19:31 doi: 10.1186/s42408-023-00189-0 |
[15] |
Hou Q, Zhou D, Feng J. 2021. Coordinate Attention for Efficient Mobile Network Design. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20-25 June 2021. USA: IEEE. pp. 13708−17. https://doi.org/10.1109/CVPR46437.2021.01350 |
[16] |
Carion N, Massa F, Synnaeve G, Usunier N, Kirillov A, Zagoruyko S. End-to-end object detection with transformers. In Computer Vision – ECCV 2020, eds. Vedaldi A, Bischof H, Brox T, Frahm JM. pp. 213−29. Switzerland: Springer Cham. https://doi.org/10.1007/978-3-030-58452-8_13 |
[17] |
He J, Erfani S, Ma X, Bailey J, Chi Y, et al. 2021. α-IoU: A family of power intersection over union losses for bounding box regression. 35th Conference on Neural Information Processing Systems (NeurIPS 2021). pp. 1−19. https://doi.org/10.48550/arXiv.2110.13675 |
[18] |
Chino DYT, Avalhais LPS, Rodrigues JF, Traina AJM. Bowfire: detection of fire in still images by integrating pixel color and texture analysis. 2015 28th SIBGRAPI conference on graphics, patterns and images, Salvador, Brazil, 26-29 August, 2015. USA: IEEE. pp. 95−102. https://doi.org/10.1109/SIBGRAPI.2015.19 |
[19] |
Zeng G. 2020. On the confusion matrix in credit scoring and its analytical properties. Communications In Statistics-theory And Methods 49:2080−93 doi: 10.1080/03610926.2019.1568485 |
[20] |
Wang L, Qu JJ, Hao X. 2008. Forest fire detection using the normalized multi-band drought index (NMDI) with satellite measurements. Agricultural And Forest Meteorology 148:1767−76 doi: 10.1016/j.agrformet.2008.06.005 |
[21] |
Majid S, Alenezi F, Masood S, Ahmad M, Gündüz ES, et al. 2022. Attention based CNN model for fire detection and localization in real-world images. Expert Systems with Applications 189:116114 doi: 10.1016/j.eswa.2021.116114 |
[22] |
Solovyev R, Wang W, Gabruseva T. 2021. Weighted boxes fusion: Ensembling boxes from different object detection models. Image And Vision Computing 107:104117 doi: 10.1016/j.imavis.2021.104117 |
[23] |
Qu Z, Gao L, Wang S, Yin H, Yi T. 2022. An improved YOLOv5 method for large objects detection with multi-scale feature cross-layer fusion network. Image and Vision Computing 125:104518 doi: 10.1016/j.imavis.2022.104518 |
[24] |
Song C, Zhang F, Li J, Xie J, Chen Y, Zhou H, et al . 2022. Detection of maize tassels for UAV remote sensing image with an improved YOLOX model. Journal of Integrative Agricultur 22:1671−83 doi: 10.1016/j.jia.2022.09.021 |