[1] |
Tuntawiroon N, Samootsakorn P, Theeraraj G. 1984. The environmental implications of the use of Calotropis gigantea as a textile fabric. Agriculture, Ecosystems & Environment 11:203−12 doi: 10.1016/0167-8809(84)90030-6 |
[2] |
D'Souza RJ, Varun M, Masih J, Paul MS. 2010. Identification of Calotropis procera L. as a potential phytoaccumulator of heavy metals from contaminated soils in Urban North Central India. Journal of Hazardous Materials 184:457−64 doi: 10.1016/j.jhazmat.2010.08.056 |
[3] |
Zheng Y, Cao E, Zhu Y, Wang A, Hu H. 2016. Perfluorosilane treated Calotropis gigantea fiber: Instant hydrophobic–oleophilic surface with efficient oil-absorbing performance. Chemical Engineering Journal 295:477−83 doi: 10.1016/j.cej.2016.03.074 |
[4] |
Zhao Z, Yan J, Wang T, Ma Y, Xie M, et al. 2022. Multi-functional Calotropis gigantea fabric using self-assembly silk fibroin, chitosan and nano-silver microspheres with oxygen low-temperature plasma treatment. Colloids and Surfaces B: Biointerfaces 215:112488 doi: 10.1016/j.colsurfb.2022.112488 |
[5] |
Ashori A, Bahreini Z. 2009. Evaluation of Calotropis gigantea as a Promising Raw Material for Fiber-reinforced Composite. Journal of Composite Materials 43:1297−304 doi: 10.1177/0021998308104526 |
[6] |
Raju P, Natarajan S. 2022. Investigation of pesticidal and anti-biofilm potential of Calotropis gigantea latex encapsulated zeolitic imidazole nanoframeworks. Journal of Inorganic and Organometallic Polymers and Materials 32:2771−80 doi: 10.1007/s10904-022-02298-w |
[7] |
Hori K, Flavier ME, Kuga S, Lam TBT, Iiyama K. 2000. Excellent oil absorbent kapok [Ceiba pentandra (L.) Gaertn.] fiber: fiber structure, chemical characteristics, and application. Journal of Wood Science 46:401−4 doi: 10.1007/BF00776404 |
[8] |
Zheng Y, Cao E, Tu L, Wang A, Hu H. 2017. A comparative study for oil-absorbing performance of octadecyltrichlorosilane treated Calotropis gigantea fiber and kapok fiber. Cellulose 24:989−1000 doi: 10.1007/s10570-016-1155-z |
[9] |
Zhang J, Liu J, Zhao Z, Sun W, Zhao G, et al. 2023. Calotropis gigantea fiber-based sensitivity-tunable strain sensors with insensitive response to wearable microclimate changes. Advanced Fiber Materials 5:1378−91 doi: 10.1007/s42765-023-00270-y |
[10] |
Renugadevi K, Devan PK, Thomas T. 2019. Fabrication of Calotropis Gigantea fibre reinforced compression spring for light weight applications. Composites Part B: Engineering 172:281−89 doi: 10.1016/j.compositesb.2019.05.037 |
[11] |
Adejoh J, Inyang BA, Egua MO, Nwachukwu KC, Alli LA, et al. 2021. In-vivo anti-plasmodial activity of phosphate buffer extract of Calotropis procera latex in mice infected with Plasmodium berghei. Journal of Ethnopharmacology 277:114237 doi: 10.1016/j.jep.2021.114237 |
[12] |
Gajendran V, Kolanthasamy E, Vasanthi E, Vadivel C, Anusha VC. 2021. Insecticidal, oviposition deterrent and antifeedant property of certain plant extracts against pulse beetle, Callosobruchus chinensis Linn. (Coleoptera: Bruchidae). Legume Research 44(11):1386−91 doi: 10.18805/lr-4652 |
[13] |
Hilário LS, Anjos RBD, Juviniano HBDM, Silva DRD. 2019. Evaluation of thermally treated Calotropis procera fiber for the removal of crude oil on the water surface. Materials 12:3894 doi: 10.3390/ma12233894 |
[14] |
Juela DM. 2022. Promising adsorptive materials derived from agricultural and industrial wastes for antibiotic removal: A comprehensive review. Separation and Purification Technology 284:120286 doi: 10.1016/j.seppur.2021.120286 |
[15] |
Rajith Kumar CR, Betageri VS, Nagaraju G, Suma BP, Kiran MS, et al. 2020. One-Pot Synthesis of ZnO Nanoparticles for Nitrite Sensing, Photocatalytic and Antibacterial Studies. Journal of Inorganic and Organometallic Polymers and Materials 30:3476−86 doi: 10.1007/s10904-020-01544-3 |
[16] |
Fei W, Hu H, Li X, Li W. 2011. Study on the Structure and Property of Akund Fiber. China Fiber Inspection 2011(7):80−83 doi: 10.14162/j.cnki.11-4772/t.2011.07.026 |
[17] |
Tian X, Yan L, Tang D, Qin W. 2015. Research focus and development trend of "Omnipotent Shrub" Calotropis gigantea L. Journal of Shanxi Agricultural Sciences 43(8):4 doi: 10.3969/j.issn.1002-2481.2015.08.37 |
[18] |
Chen Q, Zhao T, Wang M, Wang J. 2013. Studies of the fibre structure and dyeing properties of Calotropis gigantea, kapok and cotton fibres. Coloration Technology 129:448−53 doi: 10.1111/cote.12051 |
[19] |
Yao R, Yu Q, Zhao X, Wang Y. 2021. Preparation of pulp from hemp fiber for viscose staple fiber. China Pulp & Paper Industry 42(20):36−39 doi: 10.3969/j.issn.1007-9211.2021.20.007 |
[20] |
Dai T, Gu H, Xu H, Guo J. 2021. Comparison of structure and performance of several lotus silk fibers with ramie and cotton fibers. Shanghai Textile Science &Technology 2021(2):6−9 doi: 10.16549/j.cnki.issn.1001-2044.2021.02.002 |
[21] |
Zimniewska M. 2022. Hemp fibre properties and processing target textile: A review. Materials 15:1901 doi: 10.3390/ma15051901 |
[22] |
Shahzad A. 2012. Hemp fiber and its composites – a review. Journal of Composite Materials 46:973−86 doi: 10.1177/0021998311413623 |
[23] |
Huang H, Zhou H. 2014. Shanghai Patent No. CN203393269U. |
[24] |
Jin M, Tan Y, Li Y, Xue W, Ma Y, et al. 2023. Research progress in the development of Calotropis gigantea fiber. Progress in Textile Science & Technology 264:8−15 doi: 10.19507/j.cnki.1673-0356.2023.01.012 |
[25] |
Dong H, Zhang R. 2018. Dyeing process of akund fiber with reactive dyes. Shanghai Textile Science & Technology 46:22−24+50 doi: 10.16549/j.cnki.issn.1001-2044.2018.12.006 |
[26] |
Luo J, Zhao T, Sun G, Ge Y, Li S. 2016. The influence of different film-forming agent on Calotropis gigantean fiber's performance. Hans Journal of Chemical Engineering and Technology 6(2):7−16 doi: 10.12677/HJCET.2016.62002 |
[27] |
Zhao Z, Zheng Z, Chen P, Zhang H, Yang C, et al. 2019. Pre-treatment of Calotropis gigantea fibers with functional plasticizing and toughening auxiliary agents. Textile Research Journal 89:3997−4006 doi: 10.1177/0040517519826885 |
[28] |
Ma W, Chen D, Cheng L, Fan W, Luo A. 2015. Production practice for spinning of 9.72tex akund/cotton blended yarn. Shanghai Textile Science & Technology 43:39−41 doi: 10.16549/j.cnki.issn.1001-2044.2015.07.013 |
[29] |
Ganeshan P, NagarajaGanesh B, Ramshankar P, Raja K. 2018. Calotropis gigantea fibers: A potential reinforcement for polymer matrices. International Journal of Polymer Analysis and Characterization 23:271−77 doi: 10.1080/1023666X.2018.1439560 |
[30] |
Ye Z. 2019. Study on Process Optimization of Pure Spinning High-count Yarn of Calotropis Gigantea Fiber. M. E. Dissertation. Wuhan Textile University, Hubei Province. |
[31] |
Wu W, Zhang Y, Wan X, Wang J. 2018. Development of pure spinning yarn 36.4 tex of Calotropis gigantea Fiber. Textile Accessories 45(4):24−26+31 doi: 10.3969/j.issn.1001-9634.2018.04.008 |
[32] |
Kang Y. 2018. Analysis on production practice of multi-component warmth retention wadding. Shandong Textile Technology 59:15−18 doi: 10.3969/j.issn.1009-3028.2018.04.005 |
[33] |
Luo Y, Jiang H, Wang J. 2016. Development of Calotropis gigantea fiber blended yarn. Cotton Textile Technology 44(4):56−58 doi: 10.3969/j.issn.1001-7415.2016.04.014 |
[34] |
Fang G, Hu H. 2014. Preliminary study on the application of Calotropis Gigantea fiber in knitting. Knitting Industries 2014(5):26−30 doi: 10.3969/j.issn.1000-4033.2014.05.009 |
[35] |
Luo Y, Wu W, Wan X, Wang J. 2016. Performance Test and Analysis of Calotropis Gigantea Fiber Blended Knitted Fabric. Textile Accessories 43(4):35−37 doi: 10.3969/j.issn.1001-9634.2016.04.009 |
[36] |
Jiang X, Wang Q, Yu J, Cheng L, Elena S, et al. 2012. Blending ratio analysis of akund/cotton blended yarn based on micro projection. Journal of Donghua University (English Edition) 29(6):520−23 doi: 10.19884/j.1672-5220.2012.06.015 |
[37] |
Niu B, Yu M, Sun C, Wang L, Zang K, et al. 2021. Open hollow structured Calotropis gigantea fiber activated persulfate for decomposition of perfluorooctanoic acid at room temperature. Separation and Purification Technology 264:118200 doi: 10.1016/j.seppur.2020.118200 |
[38] |
Tu L, Duan W, Xiao W, Fu C, Wang A, et al. 2018. Calotropis gigantea fiber derived carbon fiber enables fast and efficient absorption of oils and organic solvents. Separation and Purification Technology 192:30−35 doi: 10.1016/j.seppur.2017.10.005 |
[39] |
Niu B, Yu M, Sun C, Wang L, Niu Y, et al. 2022. A comparative study for removal of perfluorooctanoic acid using three kinds of N-polymer functionalized Calotropis gigantea fiber. Journal of Natural Fibers 19:2119−28 doi: 10.1080/15440478.2020.1798848 |
[40] |
Zhou L, Fu C, Xiao W, Niu B, Sun C, et al. 2020. MoS2-roughened hollow-lumen plant fibers with enhanced oil absorption capacity. Cellulose 27:2267−78 doi: 10.1007/s10570-019-02943-7 |
[41] |
Hilário LS, Anjos RBD, Juviniano HBDM, Silva DRD. 2020. Crude Oil removal using Calotropis procera. BioResources 15:5246−63 doi: 10.15376/biores.15.3.5246-5263 |
[42] |
Mishra B, Chandra M, Pant D. 2021. Genome-mining for stress-responsive genes, profiling of antioxidants and radical scavenging metabolism in hyperaccumulator medicinal and aromatic plants. Industrial Crops and Products 173:114107 doi: 10.1016/j.indcrop.2021.114107 |
[43] |
Alafnan A, Sridharagatta S, Saleem H, Khurshid U, Alamri A, et al. 2021. Evaluation of the phytochemical, antioxidant, enzyme inhibition, and wound healing potential of Calotropis gigantea (L.) Dryand: A source of a bioactive medicinal product. Frontiers in Pharmacology 12:701369 doi: 10.3389/fphar.2021.701369 |
[44] |
Beg MA, Shivangi, Afzal O, Akhtar MS, Altamimi ASA, et al. 2022. Potential efficacy of β-amyrin targeting mycobacterial universal stress protein by in vitro and in silico approach. Molecules 27:4581 doi: 10.3390/molecules27144581 |
[45] |
Saratha V, Subramanian S, Sivakumar S. 2010. Evaluation of wound healing potential of Calotropis gigantea latex studied on excision wounds in experimental rats. Medicinal Chemistry Research 19:936−47 doi: 10.1007/s00044-009-9240-6 |
[46] |
He Y, Yang H, Huang P, Feng W, Gao K. 2021. Cytotoxic cardenolides from Calotropis gigantea. Phytochemistry 192:112951 doi: 10.1016/j.phytochem.2021.112951 |
[47] |
Argal A, Pathak AK. 2006. CNS activity of Calotropis gigantea roots. Journal of Ethnopharmacology 106:142−45 doi: 10.1016/j.jep.2005.12.024 |
[48] |
Rajesh R, Raghavendra Gowda CD, Nataraju A, Dhananjaya BL, Kemparaju K, et al. 2005. Procoagulant activity of Calotropis gigantea latex associated with fibrin(ogen)olytic activity. Toxicon 46:84−92 doi: 10.1016/j.toxicon.2005.03.012 |
[49] |
Mol RLD, Prabu M, Ganapathy S, Devanesan S, AlSalhi MS, et al. 2022. Biomimetic green approach on the synthesis of silver nanoparticles using Calotropis gigantea leaf extract and its biological applications. Applied Nanoscience 12:2489−95 doi: 10.1007/s13204-022-02513-7 |
[50] |
Wang H, Zhang H, Fan K, Zhang D, Hu A, et al. 2021. Frugoside delays osteoarthritis progression via inhibiting miR-155-modulated synovial macrophage M1 polarization. Rheumatology 60:4899−909 doi: 10.1093/rheumatology/keab018 |
[51] |
Nguyen MTT, Nguyen KDH, Dang PH, Nguyen HX, Awale S, et al. 2021. A new cytotoxic cardenolide from the roots of Calotropis gigantea. Natural Product Research 35:5096−101 doi: 10.1080/14786419.2020.1781114 |
[52] |
Li W, Zhang J, Luo T, Xu J, Li Y, et al. 2023. Application of calotropis gigantea fiber and its functional textiles. Cotton Textile Technology 51(8):65−69 doi: 10.3969/j.issn.1001-7415.2023.08.015 |
[53] |
Ganeshan P, Senthil Kumaran S, Raja K, Venkateswarlu D. 2019. An investigation of mechanical properties of madar fiber reinforced polyester composites for various fiber length and fiber content. Materials Research Express 6:015303 doi: 10.1088/2053-1591/aae5bd |
[54] |
Liu J, Wang F. 2009. Kapok fiber and its application. Advanced Textile Technology 17(4):55−57 doi: 10.19398/j.att.2009.04.023 |
[55] |
Zhang J, Liu J, Zhao Z, Huang D, Chen C, et al. 2022. A facile scalable conductive graphene-coated Calotropis gigantea yarn. Cellulose 29:3545−56 doi: 10.1007/s10570-022-04475-z |
[56] |
Alami AH, Aokal K, Zhang D, Taieb A, Faraj M, et al. 2019. Low-cost dye-sensitized solar cells with ball-milled tellurium-doped graphene as counter electrodes and a natural sensitizer dye. International Journal of Energy Research 43:5824−33 doi: 10.1002/er.4684 |
[57] |
Yang QQ, Gao LF, Zhu ZY, Hu CX, Huang ZP, et al. 2018. Confinement effect of natural hollow fibers enhances flexible supercapacitor electrode performance. Electrochimica Acta 260:204−11 doi: 10.1016/j.electacta.2017.11.170 |