[1]

Siddiquee S, Rovina K, Al Azad S, Naher L, Suryani S, et al. 2015. Heavy metal contaminants removal from wastewater using the potential filamentous fungi biomass: a review. Journal of Microbial & Biochemical Technology 7:384−93

doi: 10.4172/1948-5948.1000243
[2]

Masindi V, Muedi KL. 2018. Environmental contamination by heavy metals. In Heavy Metals, eds. Saleh HM, Sayed R. London, UK: IntechOpen. http://dx.doi.org/10.5772/intechopen.76082

[3]

Singh R, Ahirwar N, Tiwari J, Pathak J. 2018. Review on sources and effect of heavy metal in soil: its bioremediation. International Journal of Research in Applied, Natural and Social Sciences 2008:1−22

[4]

Briffa J, Sinagra E, Blundell R. 2020. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 6:e04691

doi: 10.1016/j.heliyon.2020.e04691
[5]

Adrees M, Ali S, Rizwan M, Zia-ur-Rehman M, Ibrahim M, et al. 2015. Mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants: a review. Ecotoxicology and Environmental Safety 119:186−97

doi: 10.1016/j.ecoenv.2015.05.011
[6]

Feng Z, Ji S, Ping J, Cui D. 2021. Recent advances in metabolomics for studying heavy metal stress in plants. Trends in Analytical Chemistry 143:116402

doi: 10.1016/j.trac.2021.116402
[7]

Liu M, Wang Y, Liu X, Korpelainen H, Li C. 2021. Intra- and intersexual interactions shape microbial community dynamics in the rhizosphere of Populus cathayana females and males exposed to excess Zn. Journal of Hazardous Materials 402:123783

doi: 10.1016/j.jhazmat.2020.123783
[8]

Zhao W, Lin X, Wang Y, Yang Q, Liu M. 2023. Nitrogen level induces sex-specific cadmium phloem remobilization and cell wall segregation in Populus cathayana. Science of The Total Environment 890:164184

doi: 10.1016/j.scitotenv.2023.164184
[9]

Nagajyoti PC, Lee KD, Sreekanth TVM. 2010. Heavy metals, occurrence and toxicity for plants: a review. Environmental Chemistry Letters 8:199−216

doi: 10.1007/s10311-010-0297-8
[10]

Nnaji ND, Onyeaka H, Miri T, Ugwa C. 2023. Bioaccumulation for heavy metal removal: a review. SN Applied Sciences 5:125

doi: 10.1007/s42452-023-05351-6
[11]

Sharma P, Jha AB, Dubey RS, Pessarakli M. 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany 2012:217037

doi: 10.1155/2012/217037
[12]

Emamverdian A, Ding Y, Mokhberdoran F, Xie Y. 2015. Heavy metal stress and some mechanisms of plant defense response. The Scientific World Journal 2015:756120

doi: 10.1155/2015/756120
[13]

Ghori NH, Ghori T, Hayat MQ, Imadi SR, Gul A, et al. 2019. Heavy metal stress and responses in plants. International Journal of Environmental Science and Technology 16:1807−28

doi: 10.1007/s13762-019-02215-8
[14]

Bi J, Liu X, Liu S, Wang Y, Liu M. 2020. Microstructural and physiological responses to cadmium stress under different nitrogen forms in two contrasting Populus clones. Environmental and Experimental Botany 169:103897

doi: 10.1016/j.envexpbot.2019.103897
[15]

Celik Sh, Yucel E, Celik S, Gucel S, Ozturk M. 2010. Carolina poplar (Populus x canadensis Moench) as a biomonitor of trace elements in the West Black Sea region of Turkey. Journal of Environmental Biology 31:225−32

[16]

Ozturk M, Altay V, Karahan F. 2017. Studies on trace elements in Glycyrrhiza taxa distributed in Hatay-Turkey. International Journal of Plant and Environment 3:1−7

doi: 10.18811/ijpen.v3i02.10431
[17]

Rascio N, Navari-Izzo F. 2011. Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Science 180:169−81

doi: 10.1016/j.plantsci.2010.08.016
[18]

Chen J, Duan B, Xu G, Korpelainen H, Niinemets Ü, et al. 2016. Sexual competition affects biomass partitioning, carbon–nutrient balance, Cd allocation and ultrastructure of Populus cathayana females and males exposed to Cd stress. Tree Physiology 36:1353−68

doi: 10.1093/treephys/tpw054
[19]

Polle A, Klein T, Kettner C. 2013. Impact of cadmium on young plants of Populus euphratica and P. × canescens, two poplar species that differ in stress tolerance. New Forests 44:13−22

doi: 10.1007/s11056-011-9301-9
[20]

Liu M, Bi J, Liu X, Kang J, Korpelainen H, et al. 2020. Microstructural and physiological responses to cadmium stress under different nitrogen levels in Populus cathayana females and males. Tree Physiology 40:30−45

doi: 10.1093/treephys/tpz115
[21]

Renner SS. 2014. The relative and absolute frequencies of angiosperm sexual systems: dioecy, monoecy, gynodioecy, and an updated online database. American Journal of Botany 101:1588−96

doi: 10.3732/ajb.1400196
[22]

Juvany M, Munné-Bosch S. 2015. Sex-related differences in stress tolerance in dioecious plants: a critical appraisal in a physiological context. Journal of Experimental Botany 66:6083−92

doi: 10.1093/jxb/erv343
[23]

Hultine KR, Bush SE, Ward JK, Dawson TE. 2018. Does sexual dimorphism predispose dioecious riparian trees to sex ratio imbalances under climate change? Oecologia 187:921−31

doi: 10.1007/s00442-018-4190-7
[24]

Song H, Lei Y, Zhang S. 2018. Differences in resistance to nitrogen and phosphorus deficiencies explain male-biased populations of poplar in nutrient-deficient habitats. Journal of Proteomics 178:123−27

doi: 10.1016/j.jprot.2017.11.013
[25]

Scheuerell RP, LeRoy CJ. 2023. Plant sex influences on riparian communities and ecosystems. Ecology and Evolution 13:e10308

doi: 10.1002/ece3.10308
[26]

Petry WK, Soule JD, Iler AM, Chicas-Mosier A, Inouye DW, et al. 2016. Sex-specific responses to climate change in plants alter population sex ratio and performance. Science 353:69−71

doi: 10.1126/science.aaf2588
[27]

Hultine KR, Grady KC, Wood TE, Shuster SM, Stella JC, et al. 2016. Climate change perils for dioecious plant species. Nature Plants 2:16109

doi: 10.1038/nplants.2016.109
[28]

Xia Z, He Y, Yu L, Lv R, Korpelainen H, et al. 2020. Sex-specific strategies of phosphorus (P) acquisition in Populus cathayana as affected by soil P availability and distribution. New Phytologist 225:782−92

doi: 10.1111/nph.16170
[29]

Yu L, Huang Z, Li Z, Korpelainen H, Li C. 2022. Sex-specific strategies of nutrient resorption associated with leaf economics in Populus euphratica. Journal of Ecology 110:2062−73

doi: 10.1111/1365-2745.13952
[30]

Ellis B, Jansson S, Strauss SH, Tuskan GA. 2010. Why and how Populus became a "model tree". In Genetics and Genomics of Populus, eds. Jansson S, Bhalerao R, Groover A. New York, NY: Springer. pp. 3−14. https://doi.org/10.1007/978-1-4419-1541-2_1

[31]

Polle A, Douglas C. 2010. The molecular physiology of poplars: paving the way for knowledge-based biomass production. Plant Biology 12:239−41

doi: 10.1111/j.1438-8677.2009.00318.x
[32]

Polle A, Chen S. 2015. On the salty side of life: molecular, physiological and anatomical adaptation and acclimation of trees to extreme habitats. Plant, Cell & Environment 38:1794−816

doi: 10.1111/pce.12440
[33]

Xia Z, He Y, Zhu Z, Korpelainen H, Li C. 2022. Covariations and trade-offs of phosphorus (P) acquisition strategies in dioecious Populus euphratica as affected by soil water availability. Functional Ecology 36:3188−99

doi: 10.1111/1365-2435.14193
[34]

Chen L, Zhang S, Zhao H, Korpelainen H, Li C. 2010. Sex-related adaptive responses to interaction of drought and salinity in Populus yunnanensis. Plant, Cell & Environment 33:1767−78

doi: 10.1111/j.1365-3040.2010.02182.x
[35]

Melnikova NV, Borkhert EV, Snezhkina AV, Kudryavtseva AV, Dmitriev AA. 2017. Sex-specific response to stress in Populus. Frontiers in Plant Science 8:1827

doi: 10.3389/fpls.2017.01827
[36]

Guo Q, Liu J, Yu L, Korpelainen H, Li C. 2021. Different sexual impacts of dioecious Populus euphratica on microbial communities and nitrogen cycle processes in natural forests. Forest Ecology and Management 496:119403

doi: 10.1016/j.foreco.2021.119403
[37]

Yu L, Tang S, Guo C, Korpelainen H, Li C. 2023. Differences in ecophysiological responses of Populus euphratica females and males exposed to salinity and alkali stress. Plant Physiology and Biochemistry 198:107707

doi: 10.1016/j.plaphy.2023.107707
[38]

Han Y, Wang L, Zhang X, Korpelainen H, Li C. 2013. Sexual differences in photosynthetic activity, ultrastructure and phytoremediation potential of Populus cathayana exposed to lead and drought. Tree Physiology 33:1043−60

doi: 10.1093/treephys/tpt086
[39]

Chen L, Zhang D, Yang W, Liu Y, Zhang L, et al. 2016. Sex-specific responses of Populus deltoides to Glomus intraradices colonization and Cd pollution. Chemosphere 155:196−206

doi: 10.1016/j.chemosphere.2016.04.049
[40]

Hedges LV, Gurevitch J, Curtis PS. 1999. The meta-analysis of response ratios in experimental ecology. Ecology 80:1150−56

doi: 10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2
[41]

Peng Y, Yuan C, Heděnec P, Yue K, Zhu G, et al. 2022. Effects of transforming multiple ecosystem types to plantations on soil carbon, nitrogen, and phosphorus concentrations at the global scale. Plant and Soil 481:213−27

doi: 10.1007/s11104-022-05632-w
[42]

Tufail MA, Ayyub M, Irfan M, Shakoor A, Chibani CM, et al. 2022. Endophytic bacteria perform better than endophytic fungi in improving plant growth under drought stress: a meta-comparison spanning 12 years (2010–2021). Physiologia Plantarum 174:e13806

doi: 10.1111/ppl.13806
[43]

Lin G, McCormack ML, Ma C, Guo D. 2017. Similar below-ground carbon cycling dynamics but contrasting modes of nitrogen cycling between arbuscular mycorrhizal and ectomycorrhizal forests. New Phytologist 213:1440−51

doi: 10.1111/nph.14206
[44]

Yuan C, Wu F, Wu Q, Fornara DA, Heděnec P, et al. 2023. Vegetation restoration effects on soil carbon and nutrient concentrations and enzymatic activities in post-mining lands are mediated by mine type, climate, and former soil properties. Science of The Total Environment 879:163059

doi: 10.1016/j.scitotenv.2023.163059
[45]

Yue K, De Frenne P, Van Meerbeek K, Ferreira V, Fornara DA, et al. 2022. Litter quality and stream physicochemical properties drive global invertebrate effects on instream litter decomposition. Biological Reviews 97:2023−38

doi: 10.1111/brv.12880
[46]

Bates D, Mächler M, Bolker B, Walker S. 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67:1−48

doi: 10.18637/jss.v067.i01
[47]

R Core Team. 2023. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

[48]

Jiang H, Korpelainen H, Li C. 2013. Populus yunnanensis males adopt more efficient protective strategies than females to cope with excess zinc and acid rain. Chemosphere 91:1213−20

doi: 10.1016/j.chemosphere.2013.01.041
[49]

Chen F, Zhang S, Zhu G, Korpelainen H, Li C. 2013. Populus cathayana males are less affected than females by excess manganese: comparative proteomic and physiological analyses. PROTEOMICS 13:2424−37

doi: 10.1002/pmic.201200365
[50]

Peng S, Wu L, Seyler BC, Pei X, Li S, et al. 2020. The combined effects of Cu and Pb on the sex-specific growth and physiology of the dioecious Populus yunnanensis. Environmental Research 184:109276

doi: 10.1016/j.envres.2020.109276
[51]

Li X, Yang Z, Li Y, Zhao H. 2022. Different responses to joint exposure to cadmium and zinc depends on the sex in Populus cathayana. Ecotoxicology and Environmental Safety 248:114297

doi: 10.1016/j.ecoenv.2022.114297
[52]

Burkhead JL, Gogolin Reynolds KA, Abdel-Ghany SE, Cohu CM, Pilon M. 2009. Copper homeostasis. New Phytologist 182:799−816

doi: 10.1111/j.1469-8137.2009.02846.x
[53]

Chen L, Han Y, Jiang H, Korpelainen H, Li C. 2011. Nitrogen nutrient status induces sexual differences in responses to cadmium in Populus yunnanensis. Journal of Experimental Botany 62:5037−50

doi: 10.1093/jxb/err203
[54]

Chen L, Gao S, Zhu P, Liu Y, Hu T, et al. 2014. Comparative study of metal resistance and accumulation of lead and zinc in two poplars. Physiologia Plantarum 151:390−405

doi: 10.1111/ppl.12120
[55]

Chen L, Hu X, Yang W, Xu Z, Zhang D, et al. 2015. The effects of arbuscular mycorrhizal fungi on sex-specific responses to Pb pollution in Populus cathayana. Ecotoxicology and Environmental Safety 113:460−68

doi: 10.1016/j.ecoenv.2014.12.033
[56]

Chen J, Han Q, Duan B, Korpelainen H, Li C. 2017. Sex-specific competition differently regulates ecophysiological responses and phytoremediation of Populus cathayana under Pb stress. Plant and Soil 421:203−18

doi: 10.1007/s11104-017-3450-3
[57]

Yang Y, Xiong J, Tao L, Cao Z, Tang W, Zhang J, et al. 2020. Regulatory mechanisms of nitrogen (N) on cadmium (Cd) uptake and accumulation in plants: a review. Science of The Total Environment 708:135186

doi: 10.1016/j.scitotenv.2019.135186
[58]

Brunner I, Godbold DL. 2007. Tree roots in a changing world. Journal of Forest Research 12:78−82

doi: 10.1007/s10310-006-0261-4
[59]

Portsmuth A, Niinemets Ü. 2007. Structural and physiological plasticity to light and nutrients in five temperate deciduous woody species of contrasting shade tolerance. Functional Ecology 21:61−77

doi: 10.1111/j.1365-2435.2006.01208.x
[60]

Wang B, Zhang J, Pei D, Yu L. 2021. Combined effects of water stress and salinity on growth, physiological, and biochemical traits in two walnut genotypes. Physiologia Plantarum 172:176−87

doi: 10.1111/ppl.13316
[61]

Gupta DK, Huang HG, Corpas FJ. 2013. Lead tolerance in plants: strategies for phytoremediation. Environmental Science and Pollution Research 20:2150−61

doi: 10.1007/s11356-013-1485-4
[62]

Yu L, Dong H, Li Z, Korpelainen H, Li C. 2020. Species-specific responses to drought, salinity and their interactions in Populus euphratica and P. pruinosa seedlings. Journal of Plant Ecology 13:563−73

doi: 10.1093/jpe/rtaa043
[63]

Yu L, Huang Z, Tang S, Korpelainen H, Li C. 2023. Populus euphratica males exhibit stronger drought and salt stress resistance than females. Environmental and Experimental Botany 205:105114

doi: 10.1016/j.envexpbot.2022.105114