[1]

Shi Z, Li T, Liu Y, Cai T, Yao W, et al. 2020. Hepatoprotective and anti-oxidative effects of total flavonoids from Qu Zhi Qiao (fruit of Citrus Paradisi cv. Changshanhuyou) on nonalcoholic steatohepatitis in vivo and in vitro through Nrf2-ARE signaling pathway. Frontiers in Pharmacology 11:483

doi: 10.3389/fphar.2020.00483
[2]

Huang R, Zhang Y, Shen S, Zhi Z, Cheng H, et al. 2020. Antioxidant and pancreatic lipase inhibitory effects of flavonoids from different citrus peel extracts: An in vitro study. Food Chemistry 326:126785

doi: 10.1016/j.foodchem.2020.126785
[3]

Dwivedi S, Malik C, Chhokar V. 2017. Molecular structure, biological functions, and metabolic regulation of flavonoids. In Plant Biotechnology: Recent Advancements and Developments, eds. Gahlawat S, Salar R, Siwach P, Duhan J, Kumar S, et al. Singapore: Springer. pp. 171−88. https://doi.org/10.1007/978-981-10-4732-9_9

[4]

Jiang J, Yan L, Shi Z, Wang L, Shan L, et al. 2019. Hepatoprotective and anti-inflammatory effects of total flavonoids of Qu Zhi Ke (peel of Citrus changshan-huyou) on non-alcoholic fatty liver disease in rats via modulation of NF-κB and MAPKs. Phytomedicine 64:153082

doi: 10.1016/j.phymed.2019.153082
[5]

Chien WJ, Saputri DS, Lin HY. 2022. Valorization of Taiwan's Citrus depressa Hayata peels as a source of nobiletin and tangeretin using simple ultrasonic-assisted extraction. Current Research in Food Science 5:278−87

doi: 10.1016/j.crfs.2022.01.013
[6]

Wang Y, Gao Y, Ding H, Liu S, Han X, et al. 2017. Subcritical ethanol extraction of flavonoids from Moringa oleifera leaf and evaluation of antioxidant activity. Food Chemistry 218:152−158

doi: 10.1016/j.foodchem.2016.09.058
[7]

Lin X, Wu L, Wang X, Yao L, Wang L. 2021. Ultrasonic-assisted extraction for flavonoid compounds content and antioxidant activities of India Moringa oleifera L. leaves: Simultaneous optimization, HPLC characterization and comparison with other methods. Journal of Applied Research on Medicinal and Aromatic Plants 20:100284

doi: 10.1016/j.jarmap.2020.100284
[8]

Dahmoune F, Nayak B, Moussi K, Remini H, Madani K. 2015. Optimization of microwave-assisted extraction of polyphenols from Myrtus communis L. leaves. Food Chemistry 166:585−595

doi: 10.1016/j.foodchem.2014.06.066
[9]

Wang Z., Shang Q, Wang W, Feng X. 2011. Microwave-assisted extraction and liquid chromatography/mass spectrometry analysis of flavonoids from grapefruit peel. Journal of Food Process Engineering 34(3):844−59

doi: 10.1111/j.1745-4530.2009.00513.x
[10]

Hayat K, Hussain S, Abbas S, Farooq U, Ding B, et al. 2009. Optimized microwave-assisted extraction of phenolic acids from citrus mandarin peels and evaluation of antioxidant activity in vitro. Separation and Purification Technology 70(1):63−70

doi: 10.1016/j.seppur.2009.08.012
[11]

Yan C, McClements DJ, Zou L, Liu W. 2019. A stable high internal phase emulsion fabricated with OSA-modified starch: An improvement in β-carotene stability and bioaccessibility. Food & Function 10(9):5446−60

doi: 10.1039/c9fo00508k
[12]

Sweedman MC, Tizzotti MJ, Schäfer C, Gilbert RG. 2013. Structure and physicochemical properties of octenyl succinic anhydride modified starches: A review. Carbohydrate Polymers 92(1):905−20

doi: 10.1016/j.carbpol.2012.09.040
[13]

Xu Y, Huang Q, Fu X, Jane J. 2015. Modification of starch octenylsuccinate by β-amylase hydrolysis in order to increase its emulsification properties. Food Hydrocolloids 48:55−61

doi: 10.1016/j.foodhyd.2015.02.010
[14]

Hategekimana J, Masamba KG, Ma J, Zhong F. 2015. Encapsulation of vitamin E: Effect of physicochemical properties of wall material on retention and stability. Carbohydrate Polymers 124:172−79

doi: 10.1016/j.carbpol.2015.01.060
[15]

Xiang L, Lu S, Quek SY, Liu Z, Lu W, et al. 2021. Exploring the effect of OSA-esterified waxy corn starch on naringin solubility and the interactions in their self-assembled aggregates. Food Chemistry 342:128226

doi: 10.1016/j.foodchem.2020.128226
[16]

Lopez-Silva M, Agama-Acevedo E, Yee-Madeira H, Bello-Perez LA, Alvarez-Ramirez J. 2022. Effect of gelatinization degree on emulsification capacity of corn starch esterified with octenyl succinic acid. Food Chemistry 375:131657

doi: 10.1016/j.foodchem.2021.131657
[17]

Kumar N, Raghavendra M, Tokas J, Singal HR. 2017. Milk proteins: Precursors of antioxidative peptides and their health benefits. In Dairy in Human Health and Disease across the Lifespan, eds. Watson RR, Collier RJ, Preedy VR. London, England: Academic Press. pp. 313–23. https://doi.org/10.1016/b978-0-12-809868-4.00024-8

[18]

Zhong Y, Shahidi F. 2015. Methods for the assessment of antioxidant activity in foods. In Handbook of Antioxidants for Food Preservation, ed. Shahidi F. Sawston, Cambridge, United Kingdom: Woodhead Publishing, pp. 287–333. https://doi.org/10.1016/B978-1-78242-089-7.00012-9

[19]

Nath A, Mandal S, Singh RK, Deka BC, Ngachan SV. 2015. Ascorbic Acid, β-carotene and antioxidant activity of broccoli during short-term refrigerated storage. In Processing and Impact on Active Components in Food, ed. Preedy V. Amsterdam, Netherlands: Academic Press, Elsevier. 2015: 27–34. https://doi.org/10.1016/b978-0-12-404699-3.00004-4

[20]

Özcan D, Si̇pahi̇oğlu HM. 2020. Simultaneous production of alpha and beta amylase enzymes using separate gene bearing recombinant vectors in the same Escherichia coli cells. Turkish Journal of Biology 44(4):201

doi: 10.3906/biy-2001-71
[21]

Liu Z, Li Y, Cui F, Ping L, Song J, et al. 2008. Production of octenyl succinic anhydride-modified waxy corn starch and its characterization. Journal of Agricultural and Food Chemistry 56(23):11499−506

doi: 10.1021/jf802317q
[22]

Guo J, Tang W, Lu S, Fang Z, Tu K, et al. 2018. Solubility improvement of hesperetin by using different octenyl succinic anhydride modified starches. LWT 95:255−61

doi: 10.1016/j.lwt.2018.04.056
[23]

Marcazzan M, Vianello F, Scarpa M, Rigo A. 1999. An ESR assay for α-amylase activity toward succinylated starch, amylose and amylopectin. Journal of Biochemical and Biophysical Methods 38(3):191−202

doi: 10.1016/S0165-022X(98)00044-X
[24]

Nagaoka S, Tobata H, Takiguchi Y, Satoh T, Sakurai T, et al. 2005. Characterization of cellulose microbeads prepared by a viscose-phase-separation method and their chemical modification with acid anhydride. Journal of Applied Polymer Science 97(1):149−57

doi: 10.1002/app.21539
[25]

Zhang B, Mei JQ, Chen B, Chen HQ. 2017. Digestibility, physicochemical and structural properties of octenyl succinic anhydride-modified cassava starches with different degree of substitution. Food Chemistry 229:136−41

doi: 10.1016/j.foodchem.2017.02.061
[26]

Lopez-Silva M, Bello-Perez LA, Agama-Acevedo E, Alvarez-Ramirez J. 2019. Effect of amylose content in morphological, functional and emulsification properties of OSA modified corn starch. Food Hydrocolloids 97:105212

doi: 10.1016/j.foodhyd.2019.105212
[27]

Wang K, Cheng L, Li Z, Li C, Hong Y, et al. 2022. The degree of substitution of OSA-modified starch affects the retention and release of encapsulated mint flavour. Carbohydrate Polymers 294:119781

doi: 10.1016/j.carbpol.2022.119781
[28]

Dawidowicz AL, Wianowska D, Olszowy M. 2012. On practical problems in estimation of antioxidant activity of compounds by DPPH method (Problems in estimation of antioxidant activity). Food Chemistry 131(3):1037−43

doi: 10.1016/j.foodchem.2011.09.067
[29]

Lo Scalzo R. 2008. Organic acids influence on DPPH scavenging by ascorbic acid. Food Chemistry 107(1):40−43

doi: 10.1016/j.foodchem.2007.07.070
[30]

He D, Wang Y, Lin J, Xing YF, Zeng W, et al. 2020. Identification and characterization of alcohol-soluble components from wheat germ-apple fermented by Lactobacillus sp. capable of preventing ulcerative colitis of dextran sodium sulfate-induced mice. Journal of Functional Foods 64:103642

doi: 10.1016/j.jff.2019.103642
[31]

Bernacka K, Bednarska K, Starzec A, Mazurek S, Fecka I. 2022. Antioxidant and antiglycation effects of Cistus × incanus water infusion, its phenolic components, and respective metabolites. Molecules 27(8):2432

doi: 10.3390/molecules27082432