[1] |
Su H, Cheng C, Gong C, Yang C, Tong J. 2010. Effect of continuous cropping on chemical composition and neutral aroma components of flue-cured tobacco. Acta Agriculturae Jiangxi 22(5):5−8 doi: 10.19386/j.cnki.jxnyxb.2010.05.002 |
[2] |
Jin Y, Yang Y, Duan Y, Kong G. 2004. Effect of rotational cropping and continuous cropping on yield and quality of flue-cured tobacco. Southwest China Journal of Agricultural Sciences 17:267−71 doi: 10.16213/j.cnki.scjas.2004.s1.063 |
[3] |
You C, Zeng W, Chen D, Huang J, Tang L. 2015. Effect of different soil management methods on functional diversity of microbial flora in rhizospheric soil for continuous tobacco cropping. Acta Tabacaria Sinica 21(02):68−74 doi: 10.16472/j.chinatobacco.2014.341 |
[4] |
Bai Y, Wang G, Cheng Y, Shi P, Yang C, et al. 2019. Soil acidification in continuously cropped tobacco alters bacterial community structure and diversity via the accumulation of phenolic acids. Scientific Reports 9(1):12499 doi: 10.1038/s41598-019-48611-5 |
[5] |
Liu Z, Zhou W, Li S, He P, Liang G, et al. 2015. Assessing soil quality of gleyed paddy soils with different productivities in subtropical China. CATENA 133:293−302 doi: 10.1016/j.catena.2015.05.029 |
[6] |
Chen S, Qi G, Luo T, Zhang H, Jiang Q, et al. 2018. Continuous-cropping tobacco caused variance of chemical properties and structure of bacterial network in soils. Land Degradation & Development 29(11):4106−20 doi: 10.1002/ldr.3167 |
[7] |
Yuan P, Wang J, Li C, Cao C. 2022. Long-term rice-crayfish farming aggravates soil gleying and induced changes of soil iron morphology. Soil Use and Management 38(1):757−70 doi: 10.1111/sum.12688 |
[8] |
Zou C, Pearce RC, Grove JH, Coyne MS. 2015. Conservation practices in tobacco production increase large aggregates and associated carbon and nitrogen. Soil Science Society of America Journal 79(6):1760−70 doi: 10.2136/sssaj2015.06.0235 |
[9] |
Poss R, Smith CJ, Dunin FX, Angus JF. 1995. Rate of soil acidification under wheat in a semi-arid environment. Plant and Soil 177:85−100 doi: 10.1007/BF00010340 |
[10] |
Hamidzadeh Z, Ghorbannezhad P, Ketabchi MR, Yeganeh B. 2023. Biomass-derived biochar and its application in agriculture. Fuel 341:127701 doi: 10.1016/j.fuel.2023.127701 |
[11] |
Lehmann J. 2007. A handful of carbon. Nature 447:143−44 doi: 10.1038/447143a |
[12] |
Wu D, Senbayram M, Zang H, Ugurlar F, Aydemir S, et al. 2018. Effect of biochar origin and soil pH on greenhouse gas emissions from sandy and clay soils. Applied Soil Ecology 129:121−27 doi: 10.1016/j.apsoil.2018.05.009 |
[13] |
Wang C, Guo X, Zeng W, Huang Y, Tang L. 2019. Effects of different biochar application amounts on growth and quality of flue-cured tobacco. Journal of Southern Agriculture 50(10):2160−68 doi: 10.3969/j.issn.2095-1191.2019.10.04 |
[14] |
He D, Zhao Y, Gao J, Sui Y, Xin W, et al. 2021. Effects of biochar application combined with nitrogen fertilizer on yield formation of japonica rice and the immediate and residual effects of nitrogen. Journal of Plant Nutrition and Fertilizers 27(12):2114−24 doi: 10.11674/zwyf.2021244 |
[15] |
Robertson GP, Vitousek PM. 2009. Nitrogen in agriculture: balancing the cost of an essential resource. Annual Review of Environment and Resources 34:97−125 doi: 10.1146/annurev.environ.032108.105046 |
[16] |
Zhang B, Wang C, Yang M, Pan R, Pan M, et al. 2022. Effects of biochar on nitrogen cycling microbes and their functional genes in tobacco-growing soils. Journal of Southern Agriculture 53(9):2444−56 doi: 10.3969/j.issn.2095-1191.2022.09.007 |
[17] |
Ding P, Noor H, Shah AA, Yan Z, Sun P, et al. 2023. Nutrient cycling and nitrogen management impact of sowing method and soil water consumption on yield nitrogen utilization in dryland wheat (Triticum aestivum L.). Agronomy 13(6):1528 doi: 10.3390/agronomy13061528 |
[18] |
Huang Y, Ye Y, Yang S. 2009. Feasibility of $ {\text{NO}^-_3} $-N determination by dual wavelength spectrophotometric method. Chinese Agricultural Science Bulletin 25(2):43−45 |
[19] |
Zhang Y, Xu A, Shan H, Ma A. 2010. Ammonium contents in potassium chloride impurities and its impact on soil $ {\text{NH}^+_4} $-N determination. Chinese Journal of Soil Science 41(05):1134−37 doi: 10.19336/j.cnki.trtb.2010.05.023 |
[20] |
Mulvaney RL, Khan SA. 2001. Diffusion methods to determine different forms of nitrogen in soil hydrolysates. Soil Science Society of America Journal 65(4):1284−92 doi: 10.2136/sssaj2001.6541284x |
[21] |
Su Y, Lv JL, Yu M, Ma ZH, Xi H, et al. 2020. Long-term of decomposed straw return positively affects the soil microbial community. Journal of Applied Microbiology 128(1):138−50 doi: 10.1111/jam.14435 |
[22] |
Ciavatta C, Govi M, Antisari L, Sequi P. 1991. Determination of organic carbon in aqueous extracts of soils and fertilizers. Communications in Soil Science and Plant Analysis 22(9-10):795−807 doi: 10.1080/00103629109368455 |
[23] |
Qi L, Zhou P, Yang L, Gao M. 2020. Effects of land reclamation on the physical, chemical, and microbial quantity and enzyme activity properties of degraded agricultural soils. Journal of Soils and Sediments 20:973−81 doi: 10.1007/s11368-019-02432-1 |
[24] |
Tian X, Li Z, Wang Y, Li B, Wang L. 2021. Evaluation on soil fertility quality under biochar combined with nitrogen reduction. Scientific Reports 11(1):13792 doi: 10.1038/s41598-021-93200-0 |
[25] |
Ge S, Ding S, Yang Y, Li J, Yan H, et al. 2018. Effects of mined application of biochar and nitrogen fertilizer on effective nitrogen in soil and nitrogen accumulation in flue-cured tobacco. Acta Tabacaria Sinica 24(2):84−92 doi: 10.16472/j.chinatobacco.2017.282 |
[26] |
Li C, Zhao C, Zhao X, Wang Y, Lv X, et al. 2023. Beneficial effects of Biochar application with nitrogen fertilizer on soil nitrogen retention, absorption and utilization in maize production. Agronomy 13(1):113 doi: 10.3390/agronomy13010113 |
[27] |
Xia H, Riaz M, Zhang M, Liu B, Li Y, et al. 2022. Biochar-N fertilizer interaction increases N utilization efficiency by modifying soil C/N component under N fertilizer deep placement modes. Chemosphere 286:131594 doi: 10.1016/j.chemosphere.2021.131594 |
[28] |
Ullah S, Zhao Q, Wu K, Ali I, Liang H, et al. 2021. Biochar application to rice with 15N-labelled fertilizers, enhanced leaf nitrogen concentration and assimilation by improving morpho-physiological traits and soil quality. Saudi Journal of Biological Sciences 28(6):3399−413 doi: 10.1016/j.sjbs.2021.03.003 |
[29] |
Ning C, Liu R, Kuang X, Chen H, Tian J, et al. 2022. Nitrogen fertilizer reduction combined with biochar application maintain the yield and nitrogen supply of rice but improve the nitrogen use efficiency. Agronomy 12(12):3039 doi: 10.3390/agronomy12123039 |
[30] |
Cheng X, Meng J, Huang Y, Liang H, E Y, et al. 2016. Effect of biochar on root growth, absorption of nitrogen and maize yield. Journal of Shenyang Agricultural University 47(2):218−23 |
[31] |
Wang Y, Liu Y, Lv H, Yang S. 2015. Effect of washing biochar and chemical fertilizers on rice yield and nutrient uptake. Journal of Plant Nutrition and Fertilizer 21(4):1049−55 doi: 10.11674/zwyf.2015.0425 |
[32] |
Wu J. 2018. Effects of biochar addition combined with nitrogen fertilizer on nitrogen utilization of flue-cured tobacco and soil characteristics. Thesis. Henan Agricultural University, China. |
[33] |
Gai X, Wang H, Liu J, Zhai L, Liu S, et al. 2014. Effects of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitrate. PloS One 9(12):e113888 doi: 10.1371/journal.pone.0113888 |
[34] |
Han F, Ren L, Zhang XC. 2016. Effect of biochar on the soil nutrients about different grasslands in the Loess Plateau. CATENA 137:554−62 doi: 10.1016/j.catena.2015.11.002 |
[35] |
Sarfraz R, Shakoor A, Abdullah M, Arooj A, Hussain A, et al. 2017. Impact of integrated application of biochar and nitrogen fertilizers on maize growth and nitrogen recovery in alkaline calcareous soil. Soil Science and Plant Nutrition 65(5):488−98 doi: /10.1080/00380768.2017.1376225 |
[36] |
Xu W, Wang G, Deng F, Zou X, Ruan H, et al. 2018. Responses of soil microbial biomass, diversity and metabolic activity to biochar applications in managed poplar plantations on reclaimed coastal saline soil. Soil Use and Management 34(4):597−605 doi: 10.1111/sum.12460 |
[37] |
Dal Molin SJ, Ernani PR, Gerber JM. 2020. Soil acidification and nitrogen release following application of nitrogen fertilizers. Communications in Soil Science and Plant Analysis 51:2551−58 doi: 10.1080/00103624.2020.1845347 |
[38] |
He M, Fan T, Yang C, Chen Y, Li D, et al. 2017. Physiological characterization of $ {\text{NO}^-_3} $ and $ {\text{NH}^+_4} $ uptake kinetics of tobacco 'K326' and 'Honghuadajinyuan' using a short-time 15N-substrate labeling approach. Plant Physiology Journal 53(4):572−80 doi: 10.13592/j.cnki.ppj.2016.0519 |
[39] |
Huang Y, Wang C, Lin C, Zhang Y, Chen X, et al. 2019. Methane and nitrous oxide flux after biochar application in subtropical acidic paddy soils under tobacco-rice rotation. Scientific reports 9:17277 doi: 10.1038/s41598-019-53044-1 |
[40] |
Chen H, Yin C, Fan X, Ye M, Peng H, et al. 2019. Reduction of N2O emission by biochar and/or 3,4-dimethylpyrazole phosphate (DMPP) is closely linked to soil ammonia oxidizing bacteria and nosZI-N2O reducer populations. Science of The Total Environment 694:133658 doi: 10.1016/j.scitotenv.2019.133658 |
[41] |
Prommer J, Wanek W, Hofhansl F, Trojan D, Offre P, et al. 2014. Biochar decelerates soil organic nitrogen cycling but stimulates soil nitrification in a temperate arable field trial. PloS One 9:e86388 doi: 10.1371/journal.pone.0086388 |
[42] |
Ouyang Y, Evans SE, Friesen ML, Tiemann LK. 2018. Effect of nitrogen fertilization on the abundance of nitrogen cycling genes in agricultural soils: a meta-analysis of field studies. Soil Biology and Biochemistry 127:71−78 doi: 10.1016/j.soilbio.2018.08.024 |
[43] |
Wang H, Wu Y, Liu J, Xue J. 2022. A review of research advances in the effects of biochar on soil nitrogen cycling and its functional microorganisms. Journal of Ecology and Rural Environment 38(6):689−701 doi: 10.19741/j.issn.1673-4831.2021.0313 |
[44] |
Stein L, Klotz M. 2016. The nitrogen cycle. Current Biology 26(3):R94−R98 doi: 10.1016/j.cub.2015.12.021 |
[45] |
Liu C, Zhou Z, Wang H, Xue J. 2023. Effects of microplastics on soil physicochemical properties and functional microorganisms related to nitrogen cycling. Acta Scientiae Circumstantiae 43:396−406 doi: 10.13671/j.hjkxxb.2023.0029 |
[46] |
Chu C, Wu Z, Huang Q, Han C, Zhong W. 2020. Effect of organic matter promotion on nitrogen-cycling genes and functional microorganisms in acidic red soils. Environmental Science 41(5):2468−75 doi: 10.13227/j.hjkx.201911013 |
[47] |
Gao S, Song Y, Song C, Ma X, Jiang L. 2020. Effects of warming and exogenous carbon input on the abundance of key microbial functional genes of carbon-nitrogen cycle in peatland soil. Acta Ecologica Sinica 40(13):4617−27 |
[48] |
Niu S, Song L, Wang J, Luo Y, Yu G. 2023. Dynamic carbon-nitrogen coupling under global change. Science China Life Sciences 66(4):771−82 doi: 10.1007/s11427-022-2245-y |