[1]

Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M, et al. 2012. Top 10 plant pathogenic bacteria in molecular plant pathology. Molecular Plant Pathology 13:614−29

doi: 10.1111/j.1364-3703.2012.00804.x
[2]

Álvarez B, López MM, Biosca EG. 2008. Survival strategies and pathogenicity of Ralstonia solanacearum phylotype II subjected to prolonged starvation in environmental water microcosms. Microbiology 154:3590−98

doi: 10.1099/mic.0.2008/019448-0
[3]

Fegan M, Prior P. 2005. How complex is the Ralstonia solanacearum species complex? In Bacterial Wilt Disease and the Ralstonia Solanacearum Species Complex, eds. Allen C, Prior P, Hayward AC. St. Paul, MN: APS Press. pp. 449−61.

[4]

Safni I, Cleenwerck I, De Vos P, Fegan M, Sly L, et al. 2014. Polyphasic taxonomic revision of the Ralstonia solanacearum species complex: proposal to emend the descriptions of Ralstonia solanacearum and Ralstonia syzygii and reclassify current R. syzygii strains as Ralstonia syzygii subsp. syzygii subsp. nov., R. solanacearum phylotype IV strains as Ralstonia syzygii subsp. indonesiensis subsp. nov., banana blood disease bacterium strains as Ralstonia syzygii subsp. celebesensis subsp. nov. and R. solanacearum phylotype I and III strains as Ralstonia pseudosolanacearum sp. nov. International Journal of Systematic and Evolutionary Microbiology 64:3087−103

doi: 10.1099/ijs.0.066712-0
[5]

Prior P, Ailloud F, Dalsing BL, Remenant B, Sanchez B, et al. 2016. Genomic and proteomic evidence supporting the division of the plant pathogen Ralstonia solanacearum into three species. BMC Genomics 17:90

doi: 10.1186/s12864-016-2413-z
[6]

Sharma P, Johnson MA, Mazloom R, Allen C, Heath LS, et al. 2022. Meta-analysis of the Ralstonia solanacearum species complex (RSSC) based on comparative evolutionary genomics and reverse ecology. Microbial Genomics 8:000791

doi: 10.1099/mgen.0.000791
[7]

Lebeau A, Daunay MC, Frary A, Palloix A, Wang J, et al. 2011. Bacterial wilt resistance in tomato, pepper, and eggplant: genetic resources respond to diverse strains in the Ralstonia solanacearum species complex. Phytopathology 101:154−65

doi: 10.1094/PHYTO-02-10-0048
[8]

Salanoubat M, Genin S, Artiguenave F, Gouzy J, Mangenot S, et al. 2002. Genome sequence of the plant pathogen Ralstonia solanacearum. Nature 415:497−502

doi: 10.1038/415497a
[9]

Lewis Ivey ML, Jimenez Madrid AM, Daunay MC, Shah DA. 2021. Evaluation of tomato, eggplant and pepper accessions for resistance to Ralstonia solanacearum species complex (RSSC) strains from Louisiana. European Journal of Plant Pathology 159:279−93

doi: 10.1007/s10658-020-02160-0
[10]

Poueymiro M, Cunnac S, Barberis P, Deslandes L, Peeters N, et al. 2009. Two type III secretion system effectors from Ralstonia solanacearum GMI1000 determine host-range specificity on tobacco. Molecular Plant-Microbe Interactions 22:538−50

doi: 10.1094/MPMI-22-5-0538
[11]

Hawkes JG. 1994. Origins of cultivated potatoes and species relationships. In Potato Genetics, eds. Bradshaw J, MacKay G. Wallingford, UK: CAB INTERNATIONAL. pp. 3−42

[12]

Daunay MC, Chaput MH, Sihachakr D, Allot M, Vedel F, et al. 1993. Production and characterization of fertile somatic hybrids of eggplant (Solanum melongena L.) with Solanum aethiopicum L. Theoretical and Applied Genetics 85:841−50

doi: 10.1007/BF00225027
[13]

Collonnier C, Mulya K, Fock I, Mariska I, Servaes A, et al. 2001. Source of resistance against Ralstonia solanacearum in fertile somatic hybrids of eggplant (Solanum melongena L.) with Solanum aethiopicum L. Plant Science 160:301−13

doi: 10.1016/S0168-9452(00)00394-0
[14]

Tamura N, Murata Y, Mukaihara T. 2002. A somatic hybrid between Solanum integrifolium and Solanum violaceum that is resistant to bacterial wilt caused by Ralstonia solanacearum. Plant Cell Reports 21:353−58

doi: 10.1007/s00299-002-0524-2
[15]

Collonnier C, Fock I, Mariska I, Servaes A, Vedel F, et al. 2003. GISH confirmation of somatic hybrids between Solanum melongena and S. torvum: assessment of resistance to both fungal and bacterial wilts. Plant Physiology and Biochemistry 41:459−70

doi: 10.1016/S0981-9428(03)00054-8
[16]

Iwamoto Y, Hirai M, Ohmido N, Fukui K, Ezura H. 2007. Fertile somatic hybrids between Solanum integrifolium and S. sanitwongsei (syn. S. kurzii) as candidates for bacterial wilt-resistant rootstock of eggplant. Plant Biotechnology 24:179−84

doi: 10.5511/plantbiotechnology.24.179
[17]

Johnston SA, Hanneman RE. 1980. Support of the endosperm balance number hypothesis utilizing some tuber-bearing Solanum species. American Potato Journal 57:7−14

doi: 10.1007/BF02852750
[18]

Laferriere LT, Helgeson JP, Allen C. 1999. Fertile Solanum tuberosum+S. commersonii somatic hybrids as sources of resistance to bacterial wilt caused by Ralstonia solanacearum. Theoretical and Applied Genetics 98:1272−78

doi: 10.1007/s001220051193
[19]

Kim-Lee H, Moon JS, Hong YJ, Kim MS, Cho HM. 2005. Bacterial wilt resistance in the progenies of the fusion hybrids between haploid of potato and Solanum commersonii. American Journal of Potato Research 82:129−37

doi: 10.1007/BF02853650
[20]

Gaiero P, Mazzella C, Vilaró F, Speranza P, de Jong H. 2017. Pairing analysis and in situ Hybridisation reveal autopolyploid-like behaviour in Solanum commersonii × S. tuberosum (potato) interspecific hybrids. Euphytica 213:137

doi: 10.1007/s10681-017-1922-4
[21]

Ferreira V, Pianzzola MJ, Vilaró FL, Galván GA, Tondo ML, et al. 2017. Interspecific potato breeding lines display differential colonization patterns and induced defense responses after Ralstonia solanacearum infection. Frontiers in Plant Science 8:1424

doi: 10.3389/fpls.2017.01424
[22]

Fock I, Collonnier C, Purwito A, Luisetti J, Souvannavong V, et al. 2000. Resistance to bacterial wilt in somatic hybrids between Solanum tuberosum and Solanum phureja. Plant Science 160:165−76

doi: 10.1016/S0168-9452(00)00375-7
[23]

Fock I, Collonnier C, Lavergne D, Vaniet S, Ambroise A, et al. 2007. Evaluation of somatic hybrids of potato with Solanum stenotomum after a long-term in vitro conservation. Plant Physiology and Biochemistry 45:209−15

doi: 10.1016/j.plaphy.2007.02.004
[24]

Chen L, Guo X, Xie C, He L, Cai X, et al. 2013. Nuclear and cytoplasmic genome components of Solanum tuberosum + S. chacoense somatic hybrids and three SSR alleles related to bacterial wilt resistance. Theoretical and Applied Genetics 126:1861−72

doi: 10.1007/s00122-013-2098-5
[25]

Cai X, Liu J, Xie C. 2004. Mesophyll protoplast fusion of Solanum tuberosum and Solanum chacoense and their somatic hybrid analysis. Acta Horticulturae Sinica 31:623−26

doi: 10.3321/j.issn:0513-353X.2004.05.012
[26]

Yu Y, Ye W, He L, Cai X, Liu T, et al. 2013. Introgression of bacterial wilt resistance from eggplant to potato via protoplast fusion and genome components of the hybrids. Plant Cell Reports 32:1687−701

doi: 10.1007/s00299-013-1480-8
[27]

Liu T, Yu Y, Cai X, Tu W, Xie C, et al. 2016. Introgression of bacterial wilt resistance from Solanum melongena to S. tuberosum through asymmetric protoplast fusion. Plant Cell, Tissue and Organ Culture (PCTOC) 125:433−43

doi: 10.1007/s11240-016-0958-9
[28]

Wang H, Cheng Z, Wang B, Dong J, Ye W, et al. 2020. Combining genome composition and differential gene expression analyses reveals that SmPGH1 contributes to bacterial wilt resistance in somatic hybrids. Plant Cell Reports 39:1235−48

doi: 10.1007/s00299-020-02563-7
[29]

Carputo D, Barone A, Cardi T, Sebastiano A, Frusciante L, et al. 1997. Endosperm balance number manipulation for direct in vivo germplasm introgression to potato from a sexually isolated relative (Solanum commersonii Dun.). Proceedings of the National Academy of Sciences of the United States of America 94:12013−17

doi: 10.1073/pnas.94.22.12013
[30]

Carputo D, Aversano R, Barone A, Di Matteo A, Iorizzo M, et al. 2009. Resistance to Ralstonia solanacearum of sexual hybrids between Solanum commersonii and S. tuberosum. American Journal of Potato Research 86:196−202

doi: 10.1007/s12230-009-9072-4
[31]

Boschi F, Schvartzman C, Murchio S, Ferreira V, Siri MI, et al. 2017. Enhanced bacterial wilt resistance in potato through expression of Arabidopsis EFR and introgression of quantitative resistance from Solanum commersonii. Frontiers in Plant Science 8:1642

doi: 10.3389/fpls.2017.01642
[32]

González M, Galván G, Siri MI, Borges A, Vilaró F. 2022. Resistance to bacterial wilt in Solanum commersonii Dun. Agrociencia Uruguay 26:e1092

doi: 10.31285/agro.26.1092
[33]

Ngou BPM, Ding P, Jones JDG. 2022. Thirty years of resistance: zig-zag through the plant immune system. The Plant Cell 34:1447−78

doi: 10.1093/plcell/koac041
[34]

Cook DE, Mesarich CH, Thomma BPHJ. 2015. Understanding plant immunity as a surveillance system to detect invasion. Annual Review of Phytopathology 53:541−63

doi: 10.1146/annurev-phyto-080614-120114
[35]

Lacombe S, Rougon-Cardoso A, Sherwood E, Peeters N, Dahlbeck D, et al. 2010. Interfamily transfer of a plant pattern-recognition receptor confers broad-spectrum bacterial resistance. Nature Biotechnology 28:365−69

doi: 10.1038/nbt.1613
[36]

Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones JDG, et al. 2006. Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125:749−60

doi: 10.1016/j.cell.2006.03.037
[37]

Kunwar S, Iriarte F, Fan Q, Evaristo da Silva E, Ritchie L, et al. 2018. Transgenic expression of EFR and Bs2 genes for field management of bacterial wilt and bacterial spot of tomato. Phytopathology 108:1402−11

doi: 10.1094/PHYTO-12-17-0424-R
[38]

Fort S, Ferreira V, Murchio S, Schvartzman C, Galván GA, et al. 2020. Potato plants transformed with the Arabidopsis EF-Tu receptor (EFR) show restricted pathogen colonization and enhanced bacterial wilt resistance under conditions resembling natural field infections. Agrociencia Uruguay 24:e413

doi: 10.31285/AGRO.24.413
[39]

Dalla-Rizza M, Schvartzman C, Murchio S, Berrueta C, Boschi F, et al. 2022. Field performance of resistant potato genotypes transformed with the EFR receptor from Arabidopsis thaliana in the absence of bacterial wilt (Ralstonia solanacearum). The Plant Pathology Journal 38:239−47

doi: 10.5423/PPJ.OA.01.2022.0008
[40]

Wei Y, Caceres-Moreno C, Jimenez-Gongora T, Wang K, Sang Y, et al. 2018. The Ralstonia solanacearum csp22 peptide, but not flagellin-derived peptides, is perceived by plants from the Solanaceae family. Plant Biotechnology Journal 16:1349−62

doi: 10.1111/pbi.12874
[41]

Coll NS, Valls M. 2013. Current knowledge on the Ralstonia solanacearum type III secretion system. Microbial Biotechnology 6:614−20

doi: 10.1111/1751-7915.12056
[42]

Deslandes L, Olivier J, Theulières F, Hirsch J, Feng D, et al. 2002. Resistance to Ralstonia solanacearum in Arabidopsis thaliana is conferred by the recessive RRS1-R gene, a member of a novel family of resistance genes. Proceedings of the National Academy of Sciences of the United States of America 99:2404−9

doi: 10.1073/pnas.032485099
[43]

Lahaye T. 2004. Illuminating the molecular basis of gene-for-gene resistance; Arabidopsis thaliana RRS1-R and its interaction with Ralstonia solanacearum popP2. Trends in Plant Science 9:1−4

doi: 10.1016/j.tplants.2003.11.002
[44]

Deslandes L, Olivier J, Peeters N, Feng D, Khounlotham M, et al. 2003. Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus. Proceedings of the National Academy of Sciences of the United States of America 100:8024−29

doi: 10.1073/pnas.1230660100
[45]

Bernoux M, Timmers T, Jauneau A, Brière C, de Wit PJGM, et al. 2008. RD19, an Arabidopsis cysteine protease required for RRS1-R-mediated resistance, is relocalized to the nucleus by the Ralstonia solanacearum PopP2 effector. The Plant Cell 20:2252−64

doi: 10.1105/tpc.108.058685
[46]

Narusaka M, Shirasu K, Noutoshi Y, Kubo Y, Shiraishi T, et al. 2009. RRS1 and RPS4 provide a dual Resistance-gene system against fungal and bacterial pathogens. The Plant Journal 60:218−26

doi: 10.1111/j.1365-313X.2009.03949.x
[47]

Sohn KH, Segonzac C, Rallapalli G, Sarris PF, Woo JY, et al. 2014. The nuclear immune receptor RPS4 is required for RRS1SLH1-dependent constitutive defense activation in Arabidopsis thaliana. PLoS Genetics 10:e1004655

doi: 10.1371/journal.pgen.1004655
[48]

Lebeau A, Gouy M, Daunay MC, Wicker E, Chiroleu F, et al. 2013. Genetic mapping of a major dominant gene for resistance to Ralstonia solanacearum in eggplant. Theoretical and Applied Genetics 126:143−58

doi: 10.1007/s00122-012-1969-5
[49]

Xiao X, Cao B, Li G, Lei J, Chen Q, et al. 2015. Functional characterization of a putative bacterial wilt resistance gene (RE-bw) in eggplant. Plant Molecular Biology Reporter 33:1058−73

doi: 10.1007/s11105-014-0814-1
[50]

Kim B, Yu W, Kim H, Dong Q, Choi S, et al. 2023. A plasma membrane nucleotide-binding leucine-rich receptor mediates the recognition of the Ralstonia pseudosolanacearum effector RipY in Nicotiana benthamiana. Plant Communications100640

doi: 10.1016/j.xplc.2023.100640
[51]

Nakano M, Mukaihara T. 2019. The type III effector RipB from Ralstonia solanacearum RS1000 acts as a major avirulence factor in Nicotiana benthamiana and other Nicotiana species. Molecular Plant Pathology 20:1237−51

doi: 10.1111/mpp.12824
[52]

Mazo-Molina C, Mainiero S, Hind SR, Kraus CM, Vachev M, et al. 2019. The Ptr1 locus of Solanum lycopersicoides confers resistance to race 1 strains of Pseudomonas syringae pv. tomato and to Ralstonia pseudosolanacearum by recognizing the type III effectors AvrRpt2 and RipBN. Molecular Plant-Microbe Interactions 32:949−60

doi: 10.1094/MPMI-01-19-0018-R
[53]

Mazo-Molina C, Mainiero S, Haefner BJ, Bednarek R, Zhang J, et al. 2020. Ptr1 evolved convergently with RPS2 and Mr5 to mediate recognition of AvrRpt2 in diverse solanaceous species. The Plant Journal 103:1433−45

doi: 10.1111/tpj.14810
[54]

Kim B, Kim I, Yu W, Li M, Kim H, et al. 2023. The Ralstonia pseudosolanacearum effector RipE1 is recognized at the plasma membrane by NbPtr1, the Nicotiana benthamiana homologue of Pseudomonas tomato race 1. Molecular Plant Pathology 24:1312−18

doi: 10.1111/mpp.13363
[55]

Jayaraman J, Segonzac C, Cho H, Jung G, Sohn KH. 2016. Effector-assisted breeding for bacterial wilt resistance in horticultural crops. Horticulture, Environment, and Biotechnology 57:415−23

doi: 10.1007/s13580-016-0191-9
[56]

Tan X, Qiu H, Li F, Cheng D, Zheng X, et al. 2019. Complete genome sequence of sequevar 14M Ralstonia solanacearum strain HA4-1 reveals novel type III effectors acquired through horizontal gene transfer. Frontiers in Microbiology 10:1893

doi: 10.3389/fmicb.2019.01893
[57]

Huang M, Tan X, Song B, Wang Y, Cheng D, et al. 2023. Comparative genomic analysis of Ralstonia solanacearum reveals candidate avirulence effectors in HA4-1 triggering wild potato immunity. Frontiers in Plant Science 14:1075042

doi: 10.3389/fpls.2023.1075042
[58]

Landry D, González-Fuente M, Deslandes L, Peeters N. 2020. The large, diverse, and robust arsenal of Ralstonia solanacearum type III effectors and their in planta functions. Molecular Plant Pathology 21:1377−88

doi: 10.1111/mpp.12977
[59]

Qiu H, Wang B, Huang M, Sun X, Yu L, et al. 2023. A novel effector RipBT contributes to Ralstonia solanacearum virulence on potato. Molecular Plant Pathology 24:947−60

doi: 10.1111/mpp.13342
[60]

Qi P, Huang M, Hu X, Zhang Y, Wang Y, et al. 2022. A Ralstonia solanacearum effector targets TGA transcription factors to subvert salicylic acid signaling. The Plant Cell 34:1666−83

doi: 10.1093/plcell/koac015
[61]

Yu G, Xian L, Xue H, Yu W, Rufian JS, et al. 2020. A bacterial effector protein prevents MAPK-mediated phosphorylation of SGT1 to suppress plant immunity. PLoS Pathogens 16:e1008933

doi: 10.1371/journal.ppat.1008933
[62]

Yu G, Derkacheva M, Rufian JS, Brillada C, Kowarschik K, et al. 2022. The Arabidopsis E3 ubiquitin ligase PUB4 regulates BIK1 and is targeted by a bacterial type-III effector. The EMBO Journal 41:e107257

doi: 10.15252/embj.2020107257
[63]

Demirjian C, Razavi N, Yu G, Mayjonade B, Zhang L, et al. 2023. An atypical NLR gene confers bacterial wilt susceptibility in Arabidopsis. Plant Communications 4:100607

doi: 10.1016/j.xplc.2023.100607
[64]

Sun Y, Li P, Deng M, Shen D, Dai G, et al. 2017. The Ralstonia solanacearum effector RipAK suppresses plant hypersensitive response by inhibiting the activity of host catalases. Cellular Microbiology 19:e12736

doi: 10.1111/cmi.12736
[65]

Wang Y, Zhao A, Morcillo RJL, Yu G, Xue H, et al. 2021. A bacterial effector protein uncovers a plant metabolic pathway involved in tolerance to bacterial wilt disease. Molecular Plant 14:1281−96

doi: 10.1016/j.molp.2021.04.014
[66]

Wang B, He W, Huang M, Feng J, Li Y, et al. 2023. Ralstonia solanacearum type III effector RipAS associates with potato type one protein phosphatase StTOPP6 to promote bacterial wilt. Horticulture Research 10:uhad087

doi: 10.1093/hr/uhad087
[67]

Mukaihara T, Hatanaka T, Nakano M, Oda K. 2016. Ralstonia solanacearum type III effector RipAY is a glutathione-degrading enzyme that is activated by plant cytosolic thioredoxins and suppresses plant immunity. mBio 7:e00359−16

[68]

Sang Y, Wang Y, Ni H, Cazalé AC, She YM, et al. 2018. The Ralstonia solanacearum type III effector RipAY targets plant redox regulators to suppress immune responses. Molecular Plant Pathology 19:129−42

doi: 10.1111/mpp.12504
[69]

Sang Y, Yu W, Zhuang H, Wei Y, Derevnina L, et al. 2020. Intra-strain elicitation and suppression of plant immunity by Ralstonia solanacearum type-III effectors in Nicotiana benthamiana. Plant Communications 1:100025

doi: 10.1016/j.xplc.2020.100025
[70]

Xian L, Yu G, Wei Y, Rufian JS, Li Y, et al. 2020. A bacterial effector protein hijacks plant metabolism to support pathogen nutrition. Cell Host & Microbe 28:548−57

doi: 10.1016/j.chom.2020.07.003
[71]

Zhuo T, Wang X, Chen Z, Cui H, Zeng Y, et al. 2020. The Ralstonia solanacearum effector RipI induces a defence reaction by interacting with the bHLH93 transcription factor in Nicotiana benthamiana. Molecular Plant Pathology 21:999−1004

doi: 10.1111/mpp.12937
[72]

de Lange O, Schreiber T, Schandry N, Radeck J, Braun KH, et al. 2013. Breaking the DNA-binding code of Ralstonia solanacearum TAL effectors provides new possibilities to generate plant resistance genes against bacterial wilt disease. New Phytologist 199:773−86

doi: 10.1111/nph.12324
[73]

Wu D, von Roepenack-Lahaye E, Buntru M, de Lange O, Schandry N, et al. 2019. A plant pathogen type III effector protein subverts translational regulation to boost host polyamine levels. Cell Host & Microbe 26:638−49

doi: 10.1016/j.chom.2019.09.014
[74]

Sun T, Wu W, Wu H, Rou W, Zhou Y, et al. 2020. Ralstonia solanacearum elicitor RipX induces defense reaction by suppressing the mitochondrial atpA Gene in host plant. International Journal of Molecular Sciences 21:2000

doi: 10.3390/ijms21062000
[75]

Wang J, Hanson P, Barnes JA. 1998. Worldwide evaluation of an international set of resistance sources to bacterial wilt in tomato. In Bacterial Wilt Disease, eds. Prior P, Allen C, Elphinstone J. Berlin, Heidelberg: Springer. pp. 269−75. https://doi.org/10.1007/978-3-662-03592-4_39

[76]

Wang J, Olivier J, Thoquet P, Mangin B, Sauviac L, et al. 2000. Resistance of tomato line hawaii7996 to Ralstonia solanacearum Pss4 in Taiwan is controlled mainly by a major strain-specific locus. Molecular Plant-Microbe Interactions 13:6−13

doi: 10.1094/MPMI.2000.13.1.6
[77]

Carmeille A, Caranta C, Dintinger J, Prior P, Luisetti J, et al. 2006. Identification of QTLs for Ralstonia solanacearum race 3-phylotype II resistance in tomato. Theoretical and Applied Genetics 113:110−21

doi: 10.1007/s00122-006-0277-3
[78]

Wang J, Ho FI, Truong HTH, Huang SM, Balatero CH, et al. 2013. Identification of major QTLs associated with stable resistance of tomato cultivar 'Hawaii 7996' to Ralstonia solanacearum. Euphytica 190:241−52

doi: 10.1007/s10681-012-0830-x
[79]

Truong HTH, Kim S, Tran HN, Nguyen TTT, Nguyen LT, et al. 2015. Development of a SCAR marker linked to bacterial wilt (Ralstonia solanacearum) resistance in tomato line Hawaii 7996 using bulked-segregant analysis. Horticulture, Environment, and Biotechnology 56:506−15

doi: 10.1007/s13580-015-1050-9
[80]

Kim B, Hwang IS, Lee HJ, Lee JM, Seo E, et al. 2018. Identification of a molecular marker tightly linked to bacterial wilt resistance in tomato by genome-wide SNP analysis. Theoretical and Applied Genetics 131:1017−30

doi: 10.1007/s00122-018-3054-1
[81]

Abebe AM, Choi J, Kim Y, Oh CS, Yeam I, et al. 2020. Development of diagnostic molecular markers for marker-assisted breeding against bacterial wilt in tomato. Breeding Science 70:462−73

doi: 10.1270/jsbbs.20027
[82]

Shin IS, Hsu JC, Huang SM, Chen JR, Wang JF, et al. 2020. Construction of a single nucleotide polymorphism marker based QTL map and validation of resistance loci to bacterial wilt caused by Ralstonia solanacearum species complex in tomato. Euphytica 216:54

doi: 10.1007/s10681-020-2576-1
[83]

Miao L, Shou S, Cai J, Jiang F, Zhu Z, et al. 2009. Identification of two AFLP markers linked to bacterial wilt resistance in tomato and conversion to SCAR markers. Molecular Biology Reports 36:479−86

doi: 10.1007/s11033-007-9204-1
[84]

Barchenger DW, Hsu YM, Ou JY, Lin YP, Lin YC, et al. 2022. Whole genome resequencing and complementation tests reveal candidate loci contributing to bacterial wilt (Ralstonia sp.) resistance in tomato. Scientific Reports 12:8374

doi: 10.1038/s41598-022-12326-x
[85]

Ano G, Hebert Y, Prior P, Messiaen CM. 1991. A new source of resistance to bacterial wilt of eggplants obtained from a cross: Solanum aethiopicum L ×Solanum melongena L. Agronomie 11:555−60

doi: 10.1051/agro:19910703
[86]

Salgon S, Jourda C, Sauvage C, Daunay MC, Reynaud B, et al. 2017. Eggplant resistance to the Ralstonia solanacearum species complex involves both broad-spectrum and strain-specific quantitative trait loci. Frontiers in Plant Science 8:828

doi: 10.3389/fpls.2017.00828
[87]

Salgon S, Raynal M, Lebon S, Baptiste JM, Daunay MC, et al. 2018. Genotyping by sequencing highlights a polygenic resistance to Ralstonia pseudosolanacearum in eggplant (Solanum melongena L.). International Journal of Molecular Sciences 19:357

doi: 10.3390/ijms19020357
[88]

Khapte PS, Singh TH, Lakshmana Reddy DC. 2018. Screening of elite eggplant (Solanum melongena) genotypes for bacterial wilt (Ralstonia solanacearum) in field conditions and their genetic association by using SSR markers. The Indian Journal of Agricultural Sciences 88:1502−9

[89]

Pandiyaraj P, Singh TH, Reddy KM, Sadashiva AT, Gopalakrishnan C, et al. 2019. Molecular markers linked to bacterial wilt (Ralstonia solanacearum) resistance gene loci in eggplant (Solanum melongena L.). Crop Protection 124:104822

doi: 10.1016/j.cropro.2019.05.016
[90]

Habe I, Miyatake K, Nunome T, Yamasaki M, Hayashi T. 2019. QTL analysis of resistance to bacterial wilt caused by Ralstonia solanacearum in potato. Breeding Science 69:592−600

doi: 10.1270/jsbbs.19059
[91]

Habe I, Miyatake K. 2022. Identification and characterization of resistance quantitative trait loci against bacterial wilt caused by the Ralstonia solanacearum species complex in potato. Molecular Breeding 42:50

doi: 10.1007/s11032-022-01321-9
[92]

Habe I, Sakamoto Y, Matsumoto K. 2023. The development and efficient utilization of molecular markers for the major quantitative trait locus of bacterial wilt resistance in potato. Euphytica 219:68

doi: 10.1007/s10681-023-03187-0
[93]

Mimura Y, Kageyama T, Minamiyama Y, Hirai M. 2009. QTL analysis for resistance to Ralstonia solanacearum in Capsicum accession 'LS2341'. Journal of the Japanese Society for Horticultural Science 78:307−13

doi: 10.2503/jjshs1.78.307
[94]

Du H, Wen C, Zhang X, Xu X, Yang J, et al. 2019. Identification of a major QTL (qRRs-10.1) that confers resistance to Ralstonia solanacearum in pepper (Capsicum annuum) using SLAF-BSA and QTL mapping. International Journal of Molecular Sciences 20:5887

[95]

Lee S, Chakma N, Joung S, Lee JM, Lee J. 2022. QTL mapping for resistance to bacterial wilt caused by two isolates of Ralstonia solanacearum in chili pepper (Capsicum annuum L.). Plants 11:1551

doi: 10.3390/plants11121551
[96]

Nishi T, Tajima T, Noguchi S, Ajisaka H, Negishi H. 2003. Identification of DNA markers of tobacco linked to bacterial wilt resistance. Theoretical and Applied Genetics 106:765−70

doi: 10.1007/s00122-002-1096-9
[97]

Qian Y, Wang X, Wang D, Zhang L, Zu C, et al. 2013. The detection of QTLs controlling bacterial wilt resistance in tobacco (N. tabacum L.). Euphytica 192:259−66

doi: 10.1007/s10681-012-0846-2
[98]

Lan T, Zheng S, Yang L, Wu S, Wang B, et al. 2014. Mapping of quantitative trait loci conferring resistance to bacterial wilt in tobacco (Nicotiana tabacum L.). Plant Breeding 133:672−77

doi: 10.1111/pbr.12202
[99]

Drake-Stowe K, Bakaher N, Goepfert S, Philippon B, Mark R, et al. 2017. Multiple disease resistance loci affect soilborne disease resistance in tobacco (Nicotiana tabacum). Phytopathology 107:1055−61

doi: 10.1094/PHYTO-03-17-0118-R
[100]

Lai R, Ikram M, Li R, Xia Y, Yuan Q, et al. 2021. Identification of novel quantitative trait nucleotides and candidate genes for bacterial wilt resistance in tobacco (Nicotiana tabacum L.) using genotyping-by-sequencing and multi-locus genome-wide association studies. Frontiers in Plant Science 12:744175

doi: 10.3389/fpls.2021.744175
[101]

Du J, Rietman H, Vleeshouwers VGAA. 2014. Agroinfiltration and PVX agroinfection in potato and Nicotiana benthamiana. Journal of Visualized Experiments 83:e50971

doi: 10.3791/50971
[102]

Jupe F, Witek K, Verweij W, Śliwka J, Pritchard L, et al. 2013. Resistance gene enrichment sequencing (RenSeq) enables reannotation of the NB-LRR gene family from sequenced plant genomes and rapid mapping of resistance loci in segregating populations. The Plant Journal 76:530−44

doi: 10.1111/tpj.12307