[1] |
Bertaccini A. 2022. Plants and phytoplasmas: when bacteria modify plants. Plants 11:1425 doi: 10.3390/plants11111425 |
[2] |
Bertaccini A, Arocha-Rosete Y, Contaldo N, Duduk B, Fiore N, et al. 2022. Revision of the 'Candidatus Phytoplasma' species description guidelines. International Journal of Systematic and Evolutionary Microbiology 72:5353 doi: 10.1099/ijsem.0.005353 |
[3] |
Liu M, Wang J, Wang L, Liu P, Zhao J, et al. 2020. The historical and current research progress on jujube – a superfruit for the future. Horticulture Research 7:119 doi: 10.1038/s41438-020-00346-5 |
[4] |
Jung HY, Sawayanagi T, Kakizawa S, Nishigawa H, Wei W, et al. 2003. 'Candidatus Phytoplasma ziziphi', a novel phytoplasma taxon associated with jujube witches'-broom disease. International Journal of Systematic and Evolutionary Microbiology 53:1037−41 doi: 10.1099/ijs.0.02393-0 |
[5] |
Liu M, Zhao J, Zhou J. 2010. Jujube witches' broom disease. Peking: China Agriculture Press. |
[6] |
Chen P, Chen L, Ye X, Tan B, Zheng X, et al. 2022. Phytoplasma effector Zaofeng6 induces shoot proliferation by decreasing the expression of ZjTCP7 in Ziziphus jujuba. Horticulture Research 9:uhab032 doi: 10.1093/hr/uhab032 |
[7] |
Ye X, Wang H, Chen P, Fu B, Zhang M, et al. 2017. Combination of iTRAQ proteomics and RNA-seq transcriptomics reveals multiple levels of regulation in phytoplasma-infected Ziziphus jujuba Mill. Horticulture Research 4:17080 doi: 10.1038/hortres.2017.80 |
[8] |
Weng X, Zhao X, Chen Z. 1962. Preliminary study on jujube witches' broom disease. Scientia Agricultura Sinica14−18 |
[9] |
Wang C. 1950. A list of plant disease of Honan. Research Bulletin No. 2. Peking: Agricultural Research Institute of North China. |
[10] |
Ji L. 1951. Introduction of the zaofeng disease on jujube trees. Hebei Agriculture and Forestry 1:17−19 |
[11] |
Ren G, Zheng T, Chen G, Shi X, Li J, et al. 1993. The diseasing factors of Jujube Witches' Broom and it's control. Journal of Henan Agricultural University 27:67−71 |
[12] |
Han J, Luo M, Xu J, Wang T, Zhang X, et al. 2017. Damage caused by jujube witches' broom and factors of influence at jujube growing areas in southern Xinjiang. Journal of Biosafety 26:80−86 |
[13] |
Li Z, She X, Tang Y, Yu L, Lan G, et al. 2019. Molecular identification of phytoplasma associated with jujube witches' broom in Guangdong. Acta Phytopathologica Sinica 49:281−82 |
[14] |
Jung HY, Win NKK, Kim YH. 2012. Current status of phytoplasmas and their related diseases in Korea. The Plant Pathology Journal 28:239−47 doi: 10.5423/PPJ.RW.04.2012.0055 |
[15] |
Ohashi A, Nohira T, Yamaguchi K. 1996. Jujube (Zizyphus jujuba) witches' broom caused by phytoplasma in Gifu prefecture. Transactions of the Japanese Forestry Society 107:309−10 |
[16] |
Khan MS, Raj SK, Snehi SK. 2008. Natural occurrence of 'Candidatus Phytoplasma ziziphi' isolates in two species of jujube trees (Ziziphus spp.) in India. Plant Pathology 57:1173 doi: 10.1111/j.1365-3059.2008.01918.x |
[17] |
Doi Y, Teranaka M, Yora K, Asuyama H. 1967. Mycoplasma-or PLT group-like microorganisms found in the phloem elements of plants infected with mulberry dwarf, potato witches' broom, aster yellows, or paulownia witches' broom. Japanese Journal of Phytopathology 33:259−66 doi: 10.3186/jjphytopath.33.259 |
[18] |
Sun X, Mou H, Li T, Tian Q, Zhao W. 2013. Mixed infection of two groups (16SrI & V) of phytoplasmas in a single Jujube tree in China. Journal of Phytopathology 161:661−65 doi: 10.1111/jph.12101 |
[19] |
Zhao J, Liu M, Zhou J, Dai L. 2006. Distribution and year-round concentration variation of Jujube Witches' Broom (JWB) phytoplasma in the plant of Chinese Jujube. Scientia Silvae Sinicae 42:144−46 |
[20] |
Xu Q, Tian GZ, Wang Z, Kong F, Li Y, et al. 2009. Molecular detection and variability of jujube witches' broom phytoplasmas from different cultivars in various regions of China. Acta Microbiologica Sinica 49:1510−19 |
[21] |
Bu J, Peng L, Liu M, Zhao J. 2016. 16S rDNA sequence analysis of witches' broom phytoplasma isolates from Chinese jujube in North China. Australasian Plant Pathology 45:119−22 doi: 10.1007/s13313-016-0396-5 |
[22] |
La YJ, Woo KS. 1980. Transmission of jujube witches'-broom mycoplasma by the leafhooper Hishimonus sellatus Uhler. Journal of Korean Society of Forest Science 48:29−39 |
[23] |
Wand C, Yv B, Zhou P, Jiang X, Shen J, et al. 1981. A study of the insect vector (Hishimonides chinensis Anufriev) transmiting the jujube witches' broom disease (I) the insect vector Hishimonides chinensis Anufriev. Acta Phytopathologica Sinica 11:27−31 |
[24] |
Chen Z, Zhang F, Tian X, Zhang J, Wang Q, et al. 1984. On the transmission of jujube witches' broom disease. Acta Phytopathologica Sinica 14:141−46 |
[25] |
Hao S, Chen Y, Wang J, Wang H, Tao W, et al. 2015. Multiplex-PCR for identification of two Hishimonus species (Hemiptera: Cicadellidae) in jujube orchards and detection of jujube witches' broom (JWB) phytoplasma in their bodies. Acta Entomologica Sinica 58:264−70 |
[26] |
Snehi SK, Srivastava S, Parihar SS, Jain B. 2020. Molecular identification of Jujube witches'-broom phytoplasma (16SrV) associated with witches' broom disease of Ziziphus oenoplia in India. Journal of Plant Pathology & Microbiology 11:492 doi: 10.35248/2157-7471.20.11.492 |
[27] |
Li Z, Bai Y, Liu P, Zhang L, Wu F. 2014. Occurrence of 'Candidatus Phytoplasma Ziziphi' in apple trees in China. Forest Pathology 44:417−19 doi: 10.1111/efp.12126 |
[28] |
Khan J, Kumar J, Thakur P, Handa A, Jarial K. 2013. First report of a 'candidatus Phytoplasma Ziziphi'-related strain associated with peach decline disease in India. Journal of Plant Pathology 95:77 |
[29] |
Wang J, Zhu D, Liu Q, Davis RE, Zhao Y. 2014. First report of sweet cherry virescence disease in China and its association with infection by a ' Candidatus Phytoplasma ziziphi'-related strain. Plant Disease 98:419 doi: 10.1094/PDIS-07-13-0787-PDN |
[30] |
Wang J, Gao R, Yu X, An M, Qin Z, et al. 2015. Identification of 'Candidatus Phytoplasma ziziphi' associated with persimmon (Diospyros kaki Thunb.) fasciation in China. Forest Pathology 45:342−45 doi: 10.1111/efp.12194 |
[31] |
Gao R, Yang S, Yan H, Wang J, Wang H, et al. 2020. First report of 'Candidatus Phytoplasma ziziphi' subgroup 16SrV-B associated with Prunus salicina Witches' Broom in China. Plant Disease 104:564−64 doi: 10.1094/pdis-06-19-1259-pdn |
[32] |
Khalid J, Alhudaib A, Rezk AA, Abushribi A. 2021. Molecular identification of phytoplasma groups in alwijam-affected date palms in Saudi Arabia and Jordan. Fresenius Enviromental Bulletin 30:1335−43 |
[33] |
Paltrinieri S, Botti S, Bertaccini A. 2005. Individuazione di 'Candidatus phytoplasma ziziphi' in drupacee in Italia. Petria 15:19−21 |
[34] |
Yu Z, Cao Y, Zhang Q, Deng D, Liu Z. 2012. 'Candidatus phytoplasma ziziphi' associated with Sophora japonica witches' broom disease in China. Journal of General Plant Pathology 78:298−300 doi: 10.1007/s10327-012-0385-7 |
[35] |
Lai G, Li F, Li J, Zhang P, Zhu T. 2022. Salix babylonica: a new host of 'Candidatus Phytoplasma ziziphi'. Australasian Plant Disease Notes 17:38 doi: 10.1007/s13314-022-00479-7 |
[36] |
Li Z, Wu Z, Liu H, Hao X, Zhang C, et al. 2010. Spiraea salicifolia: a new plant host of '' Candidatus Phytoplasma ziziphi '' -related phytoplasma. Journal of General Plant Pathology 76:299−301 doi: 10.1007/s10327-010-0251-4 |
[37] |
Yang Y, Zhao W, Li Z, Zhu S. 2011. Molecular identification of a 'Candidatus Phytoplasma ziziphi'-related strain infecting Amaranth (Amaranthus retroflexus L.) in China. Journal of Phytopathology 159:635−37 doi: 10.1111/j.1439-0434.2011.01808.x |
[38] |
Wang Q, Mei C, Gui J, Ji Y, Yu H. 2015. Detection and identification of 'Candidatus Phytoplasma ziziphi' associated with violet orychophragmus yellow dwarf disease in China. Journal of General Plant Pathology 81:449−53 doi: 10.1007/s10327-015-0613-z |
[39] |
Snehi SK, Parihar SS, Jain B. 2021. First report of a Jujube witches' -broom phytoplasma (16SrV) strain associated with witches' broom and little leaf disease of Solanum melongena in India. New Disease Reports 43:e12005 doi: 10.1002/ndr2.12005 |
[40] |
Li Q, Chen P, Yang Q, Chen L, Zhang Y, et al. 2022. First report of 'Candidatus Phytoplasma ziziphi' in sweet potato in China. Plant Disease 106:1515 doi: 10.1094/PDIS-08-21-1848-PDN |
[41] |
Liu Z, Zhao J, Liu M. 2016. Photosynthetic responses to phytoplasma infection in Chinese jujube. Plant Physiology and Biochemistry 105:12−20 doi: 10.1016/j.plaphy.2016.04.003 |
[42] |
Zhao J, Liu M. 2009. Variation of mineral element contents in Chinese Jujube with witches' broom disease. Acta Horticulturae399−404 doi: 10.17660/ActaHortic.2009.840.55 |
[43] |
Zhao X, Guo P, Peng H. 2021. Response of vessel features to witches'-broom disease in Zizyphus jujuba branches. Journal of Phytopathology 169:91−97 doi: 10.1111/jph.12962 |
[44] |
Wang H, Ye X, Li J, Tan B, Chen P, et al. 2019. Combination of iTRAQ proteomics and RNA-seq transcriptomics reveals jasmonate-related-metabolisms central regulation during the process of jujube witches' broom recovery by tetracycline treatment. Scientia Horticulturae 243:197−206 doi: 10.1016/j.scienta.2018.08.015 |
[45] |
Wang L, Liu S, Gao M, Wang L, Wang L, et al. 2022. The crosstalk of the salicylic acid and jasmonic acid signaling pathways contributed to different resistance to Phytoplasma infection between the two genotypes in Chinese jujube. Frontiers in Microbiology 13:800762 doi: 10.3389/fmicb.2022.800762 |
[46] |
Wang J, Song L, Jiao Q, Yang S, Gao R, et al. 2018. Comparative genome analysis of jujube witches'-broom phytoplasma, an obligate pathogen that causes jujube witches'-broom disease. BMC Genomics 19:689 doi: 10.1186/s12864-018-5075-1 |
[47] |
Sugio A, Kingdom HN, MacLean AM, Grieve VM, Hogenhout SA. 2011. Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis. Proceedings of the National Academy of Sciences of the United States of America 108:E1254−E1263 doi: 10.1073/pnas.1105664108 |
[48] |
Kitazawa Y, Iwabuchi N, Maejima K, Sasano M, Matsumoto O. 2022. A phytoplasma effector acts as a ubiquitin-like mediator between floral MADS-box proteins and proteasome shuttle proteins. The Plant Cell 34:1709−32 doi: 10.1093/plcell/koac062 |
[49] |
Huang W, MacLean AM, Sugio A, Maqbool A, Busscher M, et al. 2021. Parasitic modulation of host development by ubiquitin-independent protein degradation. Cell 184:5201−5214.e12 doi: 10.1016/j.cell.2021.08.029 |
[50] |
Hoshi A, Oshima K, Kakizawa S, Ishii Y, Ozeki J, et al. 2009. A unique virulence factor for proliferation and dwarfism in plants identified from a phytopathogenic bacterium. Proceedings of the National Academy of Sciences of the United States of America 106:6416−21 doi: 10.1073/pnas.0813038106 |
[51] |
Bai B, Zhang G, Li Y, Wang Y, Sujata S, et al. 2022. The ' Candidatus Phytoplasma tritici ' effector SWP12 degrades the transcription factor TaWRKY74 to suppress wheat resistance. The Plant Journal 112:1473−88 doi: 10.1111/tpj.16029 |
[52] |
Zhou J, Ma F, Yao Y, Deng M, Chen M, et al. 2021. Jujube witches' broom phytoplasma effectors SJP1 and SJP2 induce lateral bud outgrowth by repressing the ZjBRC1-controlled auxin efflux channel. Plant, Cell & Environment 44:3257−72 doi: 10.1111/pce.14141 |
[53] |
Deng M, Ma F, Zhang X, Huang J, Yang J, et al. 2021. Genome-wide identification of jujube witches' broom phytoplasma effectors revealed the role of SJP3 in inducing phyllody. Scientia Horticulturae 290:110548 doi: 10.1016/j.scienta.2021.110548 |
[54] |
Liu Z, Wang Y, Xiao J, Zhao J, Liu M. 2014. Identification of genes associated with phytoplasma resistance through suppressive subtraction hybridization in Chinese jujube. Physiological and Molecular Plant Pathology 86:43−48 doi: 10.1016/j.pmpp.2014.03.001 |
[55] |
Peng L, Zhao Y, Zhao Z, Zhao J, Liu M. 2014. Cloning and expression of a tau class glutathione S-transferase (ZjGSTU1) from Chinese jujube in response to phytoplasma infection. Acta Physiologiae Plantarum 36:2905−13 doi: 10.1007/s11738-014-1660-3 |
[56] |
Shao F, Zhang Q, Liu H, Lu S, Qiu D. 2016. Genome-wide identification and analysis of micrornas involved in witches' broom phytoplasma response in Ziziphus jujuba. PLoS ONE 11:e0166099 doi: 10.1371/journal.pone.0166099 |
[57] |
Xie N, Yuan Z, Zhang L, Zhao J, Liu M. 2016. Molecular cloning and expression of a novel eukaryotes elongation factor1A gene (ZjeEF-1α) from Chinese jujube in response to phytoplasma infection. Physiological and Molecular Plant Pathology 96:101−08 doi: 10.1016/j.pmpp.2016.10.004 |
[58] |
Fan X, Liu W, Qiao Y, Shang Y, Wang G, et al. 2017. Comparative transcriptome analysis of Ziziphus jujuba infected by jujube witches' broom phytoplasmas. Scientia Horticulturae 226:50−58 doi: 10.1016/j.scienta.2017.08.026 |
[59] |
Liu Z, Zhang L, Xue C, Fang H, Zhao J, et al. 2017. Genome-wide identification and analysis of MAPK and MAPKK gene family in Chinese jujube (Ziziphus jujuba Mill.). BMC Genomics 18:855 doi: 10.1186/s12864-017-4259-4 |
[60] |
Shao F, Lu Q, Wilson IW, Qiu D. 2017. Genome-wide identification and characterization of the SPL gene family in Ziziphus jujuba. Gene 627:315−21 doi: 10.1016/j.gene.2017.06.044 |
[61] |
Zhang L, Zhao J, Feng C, Liu M, Wang J, et al. 2017. Genome-wide identification, characterization of the MADS-box gene family in Chinese jujube and their involvement in flower development. Scientific Reports 7:1025 doi: 10.1038/s41598-017-01159-8 |
[62] |
Wang H, Ye X, Li J, Tan B, Chen P, et al. 2018. Transcriptome profiling analysis revealed co-regulation of multiple pathways in jujube during infection by 'Candidatus Phytoplasma ziziphi'. Gene 665:82−95 doi: 10.1016/j.gene.2018.04.070 |
[63] |
Chen P, Li J, Ye X, Tan B, Zheng X, et al. 2019. Genome-wide identification of Ziziphus jujuba TCP transcription factors and their expression in response to infection with jujube witches' broom phytoplasma. Acta Physiologiae Plantarum 41:86 doi: 10.1007/s11738-019-2879-9 |
[64] |
Li H, Gao W, Xue C, Zhang Y, Liu Z, et al. 2019. Genome-wide analysis of the bHLH gene family in Chinese jujube (Ziziphus jujuba Mill.) and wild jujube. BMC Genomics 20:568 doi: 10.1186/s12864-019-5936-2 |
[65] |
Liu Z, Zhao Z, Xue C, Wang L, Wang L, et al. 2019. Three main genes in the MAPK cascade involved in the Chinese jujube-phytoplasma interaction. Forests 10:392 doi: 10.3390/f10050392 |
[66] |
Liu Z, Wang L, Xue C, Chu Y, Gao W, et al. 2020. Genome-wide identification of MAPKKK genes and their responses to phytoplasma infection in Chinese jujube (Ziziphus jujuba Mill.). BMC Genomics 21:142 doi: 10.1186/s12864-020-6548-6 |
[67] |
Ma F, Huang J, Yang J, Zhou J, Sun Q, et al. 2020. Identification, expression and miRNA targeting of auxin response factor genes related to phyllody in the witches' broom disease of jujube. Gene 746:144656 doi: 10.1016/j.gene.2020.144656 |
[68] |
Zhang Y, Gao W, Li H, Wang Y, Li D, et al. 2020. Genome-wide analysis of the bZIP gene family in Chinese jujube (Ziziphus jujuba Mill.). BMC Genomics 21:483 doi: 10.1186/s12864-020-06890-7 |
[69] |
Li J, Chen L, Chen P, Li Q, Yang Q, et al. 2022. Genome-wide identification and expression of the lipoxygenase gene family in jujube (Ziziphus jujuba) in response to phytoplasma infection. Journal of Plant Biochemistry and Biotechnology 31:139−53 doi: 10.1007/s13562-021-00670-4 |
[70] |
Wang Z, Wang Q. 1988. Studies on antiserum preparation and application of chinese jujube witches' broom mycoplasma-like-organisms (MLO). Journal of Microbiology 8:17−21,47 |
[71] |
Han J, Luo M, He G, Zhang X, Xiang X. 2015. Development of a loop-mediated isothermal amplification assay for visual detection of jujube witches' broom phytoplasma. Acta Agriculturae Boreali-occidentalis Sinica 24:125−31 |
[72] |
Chen P, Li Q, Jiao J, Yang Q, Guo S, et al. 2022. Rapid detection of multiple phytoplasma with an All-In-One Dual (AIOD) CRISPR assay. Authorea doi: 10.22541/au.165285729.93729510/v1 |
[73] |
Wen X, Guo X, Tian G, Sun Z, Li Y. 2005. Identification of resistances of several jujube cultivars and selected Pozao single trees against jujube witches' broom disease. Scientia Silvae Sinicae 41:88−96 |
[74] |
Zhao J, Liu M, Zhou J, Zhou H. 2006. Screening and application of Chinese jujube germplasm with high resistance to witches′ broom disease. Journal of Plant Genetic Resources 7:398−403 |
[75] |
Liu M, Zhou J, Zhao J, Wang J, Liu P, et al. 2006. An excellent new cultivar of Chinese jujube with high resistance to jujube witches broom disease 'Xingguang'. Acta Horticulturae Sinica 33:687 |
[76] |
Wang H, Ren Z, Pan Y, Feng S, Lin C, et al. 2018. Determination of individual jujube trees against jujube witches' broom disease and screening of resistant varieties from the ancient individual jujube trees growing in Beijing. Scientia Silvae Sinicae 54:124−32 doi: 10.11707/j.1001-7488.20180814 |
[77] |
Zhu W, Du X, Guo H, Zhao Y, He X. 1996. Virus elimination and tissue culture of Jun jujuba. Acta Horticulturae Sinica 23:197−98 |
[78] |
Tian Y, Wang H, Niu C, Luo X. 1993. Studies on techniques of eliminating mycoplasma-like organisms from Zizyphus jujuba Mill infected by jujube witches' broom. Journal of Beijing Forestry University 15:20−26 |
[79] |
Wang R, Mou H, Gao X, Chen L, Li M, et al. 2015. Cryopreservation for eradication of jujube witches' broom phytoplasma from Chinese jujube (Ziziphus jujuba). Annals of Applied Biology 166:218−28 doi: 10.1111/aab.12175 |
[80] |
Musetti R, Ermacora P, Martini M, Loi N, Osler R. 2013. What can we learn from the phenomenon of "recovery"? Phytopathogenic Mollicutes 3:63−65 doi: 10.5958/j.2249-4677.3.1.015 |