[1]

Rogers K, Chen X. 2013. Biogenesis, turnover, and mode of action of plant microRNAs. The Plant Cell 25:2383−99

doi: 10.1105/tpc.113.113159
[2]

Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP. 2002. MicroRNAs in plants. Genes & Development 16:1616−26

doi: 10.1101/gad.1004402
[3]

Han J, Fang J, Wang C, Yin Y, Sun X, et al. 2014. Grapevine microRNAs responsive to exogenous gibberellin. BMC Genomics 15:111

doi: 10.1186/1471-2164-15-111
[4]

Li Y. 2022. Identification of cucumber miR160 gene family and functional analysis of Csa-miR160d. Thesis. Henan University of Science and Technology.

[5]

Zhang F. 2020. Molecular mechanisms of DNA methylation and microRNA regulation of chrysanthemum inflorescence development. Thesis. Beijing Forestry University.

[6]

Wang M, Wang Q, Zhang B. 2019. Identification and characterization of miRNAs in apple rootstock 'M26' and their potential roles in regulating grafting process. Gene 684:108−18

[7]

Zhang L. 2022. Comparison of physiological responses of two wheat cultivars to saline-alkali stress and screening of differential microRNA. Huaibei: Huaibei Normal University. https://doi.org/10.27699/d.cnki.ghbmt.2022.000149

[8]

Li N, Wang J, Wang B, Da Q, Huang S, et al. 2021. Research progress on microRNA regulation of growth, development, and stress responses in tomato. Xinjiang Agricultural Sciences 58:474−82

[9]

Zhu H, Xia R, Zhao B, An Y, Dardick CD, et al. 2012. Unique expression, processing regulation, and regulatory network of peach (Prunus persica) miRNAs. BMC Plant Biology 12:149

doi: 10.1186/1471-2229-12-149
[10]

Zhang J, Ai X, Guo W, Peng S, Deng X, et al. 2012. Identification of miRNAs and their target genes using Deep sequencing and degradome analysis in trifoliate orange [Poncirus trifoliate (L.) Raf]. Molecular Biotechnology 51:44−57

doi: 10.1007/s12033-011-9439-x
[11]

Niu Q, Qian M, Liu G, Yang F, Teng Y. 2013. A genome-wide identification and characterization of mircoRNAs and their targets in 'Suli' pear (Pyrus pyrifolia white pear group). Planta 238:1095−112

doi: 10.1007/s00425-013-1954-5
[12]

Ye K, Chen Y, Hu X, Guo J. 2013. Computational identification of microRNAs and their targets in apple. Genes & Genomics 35:377−85

doi: 10.1007/s13258-013-0070-z
[13]

Wang M, Li T, Wu Y, Song S, Bai T, et al. 2021. Genome-wide identification of microRNAs involved in the regulation of fruit ripening in apple (Malus domestica). Scientia Horticulturae 289:110416

doi: 10.1016/j.scienta.2021.110416
[14]

Varkonyi-Gasic E, Gould N, Sandanayaka M, Sutherland P, MacDiarmid RM. 2010. Characterisation of microRNAs from apple (Malus domestica 'Royal Gala') vascular tissue and phloem sap. BMC Plant Biology 10:159

doi: 10.1186/1471-2229-10-159
[15]

Yu X, Hou Y, Chen W, Wang S, Wang P, et al. 2017. Malus hupehensis miR168 targets to ARGONAUTE1 and contributes to the resistance against Botryosphaeria dothidea infection by altering defense responses. Plant and Cell Physiology 58:1541−57

doi: 10.1093/pcp/pcx080
[16]

Xing L, Zhang D, Li Y, Zhao C, Zhang S, et al. 2014. Genome-wide identification of vegetative phase transition-associated microRNAs and target predictions using degradome sequencing in Malus hupehensis. BMC Genomics 15:1125

doi: 10.1186/1471-2164-15-1125
[17]

Corbsier L, Vincent C, Jand S, Fornara F, Fan Q, et al. 2007. FT protein movement contributes to long-distance signaling floral induction of Arabidopsis. Science 316:1030−33

doi: 10.1126/science.1141752
[18]

Guo X. 2017. The involvement of sRNA in apple (Malus domestica) floral transition. Beijing: China Agricultural University.

[19]

Guo X, Ma Z, Zhang Z, Cheng L, Zhang X, et al. 2017. Small RNA-sequencing links physiological changes and RdDM process to vegetative-to-floral transition in apple. Frontiers in Plant Science 8:873

doi: 10.3389/fpls.2017.00873
[20]

Song C, Zhang D, Zheng L, Zhang J, Zhang B, et al. 2017. miRNA and degradome sequencing reveal miRNA and their target genes that may mediate shoot growth in spur type mutant "Yanfu 6". Frontiers in Plant Science 8:441

doi: 10.3389/fpls.2017.00441
[21]

Yu X, Du B, Gao Z, Zhang S, Tu X, et al. 2014. Apple ring rot-responsive putative microRNAs revealed by high-throughput sequencing in Malus × domestica Borkh. Molecular Biology Reports 41:5273−86

doi: 10.1007/s11033-014-3399-8
[22]

Huang YC, Tsay TT. 2017. The roles of rootstock and scion in grafting. Horticulture Plant Journal 3:193−201

[23]

Davoudi M, Song M, Zhang M, Chen J, Lou Q. 2022. Long-distance control of pumpkin rootstock over cucumber scion under drought stress as revealed by transcriptome sequencing and mobile mRNAs identifications. Horticulture Research 9:uhab033

doi: https://doi.org/10.1093/hr/uhab033
[24]

Kviklys D, Samuolienė G. 2020. Relationships among the rootstock, crop load, and sugar hormone signaling of apple tree, and their effects on biennial bearing. Frontiers in Plant Science 11:1213

doi: 10.3389/fpls.2020.01213
[25]

Pant BD, Buhtz A, Kehr J, Scheible WR. 2008. MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis. The Plant Journal 53:731−38

doi: 10.1111/j.1365-313X.2007.03363.x
[26]

Zhang F, Zhong H, Zhou X, Pan M, Xu J, et al. 2022. Grafting with rootstocks promotes phenolic compound accumulation in grape berry skin during development based on integrative multi-omics analysis. Horticulture Research 9:uhac055

doi: 10.1093/hr/uhac055
[27]

Thieme CJ, Rojas-triana M, Stecyk E, Schudoma C, Zhang W, et al. 2015. Endogenous Arabidopsis messenger RNAs transported to distant tissues. Nature Plants 1:15025

doi: 10.1038/nplants.2015.25
[28]

Wang W. 2017. Genome-wide analysis of mRNAs, miRNAs and ALDH gene family in soybean response to drought stress. Nanjing: Nanjing Agricultural University.

[29]

Buhtz A, Springer F, Chappell L, Baulcombe DC, Kehr J. 2008. Identification and characterization of small RNAs from the phloem of Brassica napus. The Plant Journal 53:739−49

doi: 10.1111/j.1365-313x.2007.03368.x
[30]

Tzarfati R. 2013. Graft-induced changes in microRNA expression patterns in citrus leaf petioles. The Open Plant Science Journal 7:17−23

[31]

Xu Y. 2018. Effect of grafting and stress on miRNAs expression in Citrus. Chongqing: Southwest University.

[32]

Liu N, Yang J, Guo S, Xu Y, Zhang M. 2013. Genome-wide identification and comparative analysis of conserved and novel microRNAs in grafted watermelon by high-throughput sequencing. PLoS ONE 8:e57359

doi: 10.1371/journal.pone.0057359
[33]

An N, Fan S, Yang Y, Chen X, Dong F, et al. 2018. Identification and characterization of miRNAs in self-rooted and grafted Malus reveals critical networks associated with flowering. International Journal of Molecular Sciences 19:2384

doi: 10.3390/ijms19082384
[34]

Zhang Q, Yang X, Li F, Deng Y. 2022. Advances in miRNA-mediated growth and development regulation in horticultural crops. Acta Horticulturae Sinica 49:1145−61

[35]

Li Q, Gao Y, Wang K, Feng J, Sun S, et al. 2023. Transcriptome analysis of the effects of grafting interstocks on apple rootstocks and scions. International Journal of Molecular Sciences 24:807

doi: 10.3390/ijms24010807
[36]

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCᴛ method. Methods 25:402−8

doi: 10.1006/meth.2001.1262
[37]

Guo H. 2020. Research progress on interactive mechanism between rootstock and scion of grafted plants. Guizhou Agricultural Sciences 48:35−44

[38]

Pasquinelli AE. 2012. MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nature Reviews Genetics 13:271−82

doi: 10.1038/nrg3162
[39]

Wang Y, Wang X, Wu W. 2018. Identification and characterization of microRNAs and their target genes in apple rootstock under waterlogging stress. Gene 651:148−59

[40]

Tahir MM, Zhang X, Shah K, Hayat F, Li S, et al. 2021. Nitrate application affects root morphology by altering hormonal status and gene expression patterns in B9 apple rootstock nursery plants. Fruit Research 1:14

doi: 10.48130/frures-2021-0014
[41]

Wang M, Wang Q, Zhang B. 2013. Response of miRNAs and their targets to salt and drought stresses in cotton (Gossypium hirsutum L.). Gene 530:26−32

doi: 10.1016/j.gene.2013.08.009
[42]

Li X, Mao J. 2017. Identification and functional analysis of miRNAs in apple rootstock Malus hupehensis. Plant Molecular Biology Reporter 35:363−74

[43]

Franco-Zorrilla JM, Valli A, Todesco M, Mateos I, Puga MI, et al. 2007. Target mimicry provides a new mechanism for regulation of microRNA activity. Nature Genetics 39:1033−37

doi: 10.1038/ng2079
[44]

Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, et al. 2005. Specific effects of microRNAs on the plant transcriptome. Developmental Cell 8:517−27

doi: 10.1016/j.devcel.2005.01.018
[45]

Wang W, Wang S, Li M, Hou L. 2017. Expression analysis and miRNA prediction of wax synthetic genes in cucumber grafted onto different rootstock. Journal of Nuclear Agricultural Sciences 31:1896−903

[46]

He Q, Zhu S, Zhang B. 2014. MicroRNA-target gene responses to lead-induced stress in cotton (Gossypium hirsutum L.). Functional & Integrative Genomics 14:507−15

doi: 10.1007/s10142-014-0378-z
[47]

Sun P, Tahir MM, Lu X, Liu Z, Zhang X, et al. 2022. Comparison of leaf morphological, anatomical, and photosynthetic responses to drought stress among eight apple rootstocks. Fruit Research 2:20

doi: 10.48130/frures-2022-0020
[48]

Voinnet O. 2009. Origin, biogenesis, and activity of plant MicroRNAs. Cell 136:669−87

doi: 10.1016/j.cell.2009.01.046
[49]

Jones-Rhoades MW, Bartel DP. 2004. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Molecular Cell 14:787−99

doi: 10.1016/j.molcel.2004.05.027
[50]

Xing L, Zhang D, Zhao C, Li Y, Ma J, et al. 2016. Shoot bending promotes flower bud formation by miRNA-mediated regulation in apple (Malus domestica Borkh.). Plant Biotechnology Journal 14:749−70

doi: 10.1111/pbi.12425
[51]

Chen T, Chen X, Zhang S, Zhu J, Tang B, et al. 2021. The genome sequence archive family: toward explosive data growth and diverse data types. Genomics, Proteomics & Bioinformatics 19:578−83

doi: 10.1016/j.gpb.2021.08.001
[52]

CNCB-NGDC Members and Partners. 2022. Database Resources of the National Genomics Data Center, China National Center for Bioinformation in 2022. Nucleic Acids Research 50:D27−D38

doi: 10.1093/nar/gkab951