[1]

Yang J, Zhou Y, Wu Q, Chen Y, Zhang P, et al. 2019. Molecular characterization of a novel TaGL3-5A allele and its association with grain length in wheat (Triticum aestivum L.). Theoretical and Applied Genetics 132:1799−814

doi: 10.1007/s00122-019-03316-1
[2]

Pellny TK, Lovegrove A, Freeman J, Tosi P, Love CG, et al. 2012. Cell walls of developing wheat starchy endosperm: comparison of composition and RNA-Seq transcriptome. Plant Physiology 158:612−27

doi: 10.1104/pp.111.189191
[3]

Ma D, Yan J, He Z, Wu L, Xia X. 2012. Characterization of a cell wall invertase gene TaCwi-A1 on common wheat chromosome 2A and development of functional markers. Molecular Breeding 29:43−52

doi: 10.1007/s11032-010-9524-z
[4]

Jiang Y, Jiang Q, Hao C, Hou J, Wang L, et al. 2015. A yield-associated gene TaCWI, in wheat: its function, selection and evolution in global breeding revealed by haplotype analysis. Theoretical and Applied Genetics 128:131−43

doi: 10.1007/s00122-014-2417-5
[5]

Al-Sheikh Ahmed S, Zhang J, Ma W, Dell B. 2018. Contributions of TaSUTs to grain weight in wheat under drought. Plant Molecular Biology 98:333−47

doi: 10.1007/s11103-018-0782-1
[6]

Hou J, Jiang Q, Hao C, Wang Y, Zhang H, et al. 2014. Global selection on sucrose synthase haplotypes during a century of wheat breeding. Plant Physiology 164:1918−29

doi: 10.1104/pp.113.232454
[7]

Maraña C, Garcia-Olmedo F, Carbonero P. 1988. Linked sucrose synthase genes in group-7 chromosomes in hexaploid wheat (Triticum aestivum L.). Gene 63:253−60

doi: 10.1016/0378-1119(88)90529-X
[8]

Jiang Q, Hou J, Hao C, Wang L, Ge H, et al. 2011. The wheat (T. aestivum) sucrose synthase 2 gene (TaSus2) active in endosperm development is associated with yield traits. Functional & Integrative Genomics 11:49−61

doi: 10.1007/s10142-010-0188-x
[9]

Wang Y, Hou J, Liu H, Li T, Wang K, et al. 2019. TaBT1, affecting starch synthesis and thousand kernel weight, underwent strong selection during wheat improvement. Journal of Experimental Botany 70:1497−511

doi: 10.1093/jxb/erz032
[10]

Hou J, Li T, Wang Y, Hao C, Liu H, Zhang X. 2017. ADP-glucose pyrophosphorylase genes, associated with kernel weight, underwent selection during wheat domestication and breeding. Plant Biotechnology Journal 15:1533−43

doi: 10.1111/pbi.12735
[11]

Kang G, Liu G, Peng X, Wei L, Wang C, et al. 2013. Increasing the starch content and grain weight of common wheat by overexpression of the cytosolic AGPase large subunit gene. Plant Physiology and Biochemistry 73:93−98

doi: 10.1016/j.plaphy.2013.09.003
[12]

Irshad A, Guo H, Ur Rehman S, Wang X, Gu J, et al. 2021. Identification of single nucleotide polymorphism in TaSBEIII and development of KASP marker associated with grain weight in wheat. Frontiers in Genetics 12:697294

doi: 10.3389/fgene.2021.697294
[13]

Guo H, Liu Y, Li X, Yan Z, Xie Y, et al. 2017. Novel mutant alleles of the starch synthesis gene TaSSIVb-D result in the reduction of starch granule number per chloroplast in wheat. BMC Genomics 18:358

doi: 10.1186/s12864-017-3724-4
[14]

Irshad A, Guo H, Zhang S, Gu J, Zhao L, et al. 2019. EcoTILLING reveals natural allelic variations in starch synthesis key gene TaSSIV and its haplotypes associated with higher thousand grain weight. Genes 10:307

doi: 10.3390/genes10040307
[15]

Ral JP, Bowerman AF, Li Z, Sirault X, Furbank R, et al. 2012. Down-regulation of Glucan, Water-Dikinase activity in wheat endosperm increases vegetative biomass and yield. Plant Biotechnology Journal 10:871−82

doi: 10.1111/j.1467-7652.2012.00711.x
[16]

Gao Y, An K, Guo W, Chen Y, Zhang R, et al. 2021. The endosperm-specific transcription factor TaNAC019 regulates glutenin and starch accumulation and its elite allele improves wheat grain quality. The Plant Cell 33:603−22

doi: 10.1093/plcell/koaa040
[17]

Li J, Xie L, Tian X, Liu S, Xu D, et al. 2021. TaNAC100 acts as an integrator of seed protein and starch synthesis exerting pleiotropic effects on agronomic traits in wheat. The Plant Journal 108:829−40

doi: 10.1111/tpj.15485
[18]

Guo X, Fu Y, Lee YRJ, Chern M, Li M, et al. 2022. The PGS1 basic helix-loop-helix protein regulates Fl3 to impact seed growth and grain yield in cereals. Plant Biotechnology Journal 20:1311−26

doi: 10.1111/pbi.13809
[19]

Khan N, Zhang Y, Wang J, Li Y, Chen X, et al. 2022. TaGSNE, a WRKY transcription factor, overcomes the trade-off between grain size and grain number in common wheat and is associated with root development. Journal of Experimental Botany 73:6678−96

doi: 10.1093/jxb/erac327
[20]

Yu M, Wang X, Zhou H, Yu Y, Wei F, et al. 2022. Identification of the yield traits related haplotype combinations of transcription factor genes TaHDZ34 in common wheat. Molecular Breeding 42:34

doi: 10.1007/s11032-022-01298-5
[21]

Yan X, Zhao L, Ren Y, Dong Z, Cui D, et al. 2019. Genome-wide association study revealed that the TaGW8 gene was associated with kernel size in Chinese bread wheat. Scientific Reports 9:2702

doi: 10.1038/s41598-019-38570-2
[22]

Cao J, Liu K, Song W, Zhang J, Yao Y, et al. 2021. Pleiotropic function of theSQUAMOSA PROMOTER-BINDING PROTEIN-LIKE gene TaSPL14 in wheat plant architecture. Planta 253:44

doi: 10.1007/s00425-020-03531-x
[23]

Cao L, Li T, Geng S, Zhang Y, Pan Y, et al. 2023. TaSPL14-7A is a conserved regulator controlling plant architecture and yield traits in common wheat (Triticum aestivum L.). Frontiers in Plant Science 14:1178624

doi: 10.3389/fpls.2023.1178624
[24]

Lv Q, Li L, Meng Y, Sun H, Chen L, et al. 2022. Wheat E3 ubiquitin ligase TaGW2-6A degrades TaAGPS to affect seed size. Plant Science 320:111274

doi: 10.1016/j.plantsci.2022.111274
[25]

Su Z, Hao C, Wang L, Dong Y, Zhang X. 2011. Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics 122:211−23

doi: 10.1007/s00122-010-1437-z
[26]

Liu H, Li H, Hao C, Wang K, Wang Y, et al. 2020. TaDA1, a conserved negative regulator of kernel size, has an additive effect with TaGW2 in common wheat (Triticum aestivum L.). Plant Biotechnology Journal 18:1330−42

doi: 10.1111/pbi.13298
[27]

Wang J, Wang R, Mao X, Zhang J, Liu Y, et al. 2020. RING finger ubiquitin E3 ligase gene TaSDIR1-4A contributes to determination of grain size in common wheat. Journal of Experimental Botany 71:5377−88

doi: 10.1093/jxb/eraa271
[28]

Zhang G, Yang J, Zhao X, Li Q, Wu Y, et al. 2021. Wheat TaPUB1 protein mediates ABA response and seed development through ubiquitination. Plant Science 309:110913

doi: 10.1016/j.plantsci.2021.110913
[29]

Song L, Liu J, Cao B, Liu B, Zhang X, et al. 2023. Reducing brassinosteroid signalling enhances grain yield in semi-dwarf wheat. Nature 617:118−24

doi: 10.1038/s41586-023-06023-6
[30]

Miao L, Mao X, Wang J, Liu Z, Zhang B, et al. 2017. Elite haplotypes of a protein kinase gene TaSnRK2.3 associated with important agronomic traits in common wheat. Frontiers in Plant Science 8:368

doi: 10.3389/fpls.2017.00368
[31]

Ur Rehman S, Wang J, Chang X, Zhang X, Mao X, et al. 2019. A wheat protein kinase gene TaSnRK2.9-5A associated with yield contributing traits. Theoretical and Applied Genetics 132:907−19

doi: 10.1007/s00122-018-3247-7
[32]

Zhang ZG, Lv GD, Li B, Wang JJ, Zhao Y, et al. 2017. Isolation and characterization of the TaSnRK2.10 gene and its association with agronomic traits in wheat (Triticum aestivum L.). PLoS One 12:e0174425

doi: 10.1371/journal.pone.0174425
[33]

Milner MJ, Howells RM, Craze M, Bowden S, Graham N, et al. 2018. A PSTOL-like gene, TaPSTOL, controls a number of agronomically important traits in wheat. BMC Plant Biology 18:115

doi: 10.1186/s12870-018-1331-4
[34]

Wang C, Zhang L, Xie Y, Guo X, Zhang Y, et al. 2022. A superior allele of the wheat gene TaGL3.3-5B, selected in the breeding process, contributes to seed size and weight. Theoretical and Applied Genetics 135:1879−91

doi: 10.1007/s00122-022-04081-4
[35]

Liu H, Si X, Wang Z, Cao L, Gao L, et al. 2023. TaTPP-7A positively feedback regulates grain filling and wheat grain yield through T6P-SnRK1 signalling pathway and sugar-ABA interaction. Plant Biotechnology Journal 21:1159−75

doi: 10.1111/pbi.14025
[36]

Zhu X, Rong W, Wang K, Guo W, Zhou M, et al. 2022. Overexpression of TaSTT3b-2B improves resistance to sharp eyespot and increases grain weight in wheat. Plant Biotechnology Journal 20:777−93

doi: 10.1111/pbi.13760
[37]

Ren X, Zhi L, Liu L, Meng D, Su Q, et al. 2021. Alternative splicing of TaGS3 differentially regulates grain weight and size in bread wheat. International Journal of Molecular Sciences 22:11692

doi: 10.3390/ijms222111692
[38]

Yang J, Zhou Y, Zhang Y, Hu W, Wu Q, et al. 2019. Cloning, characterization of TaGS3 and identification of allelic variation associated with kernel traits in wheat (Triticum aestivum L.). BMC Genetics 20:98

doi: 10.1186/s12863-019-0800-6
[39]

Li A, Hao C, Wang Z, Geng S, Jia M, et al. 2022. Wheat breeding history reveals synergistic selection of pleiotropic genomic sites for plant architecture and grain yield. Molecular Plant 15:504−19

doi: 10.1016/j.molp.2022.01.004
[40]

Shoaib M, Yang W, Shan Q, Sun L, Wang D, et al. 2020. TaCKX gene family, at large, is associated with thousand-grain weight and plant height in common wheat. Theoretical and Applied Genetics 133:3151−63

doi: 10.1007/s00122-020-03661-6
[41]

Lu J, Chang C, Zhang HP, Wang SX, Sun G, et al. 2015. Identification of a novel allele of TaCKX6a02 associated with grain size, filling rate and weight of common wheat. PLoS One 10:e0144765

doi: 10.1371/journal.pone.0144765
[42]

Zhang L, Zhao YL, Gao LF, Zhao GY, Zhou RH, et al. 2012. TaCKX6-D1, the ortholog of rice OsCKX2, is associated with grain weight in hexaploid wheat. New Phytologist 195:574−84

doi: 10.1111/j.1469-8137.2012.04194.x
[43]

Ling HQ, Zhao S, Liu D, Wang J, Sun H, et al. 2013. Draft genome of the wheat A-genome progenitor Triticum urartu. Nature 496:87−90

doi: 10.1038/nature11997
[44]

Zhang Y, Liang Z, Zong Y, Wang Y, Liu J, et al. 2016. Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nature Communications 7:12617

doi: 10.1038/ncomms12617
[45]

Hu MJ, Zhang HP, Liu K, Cao JJ, Wang SX, et al. 2016. Cloning and characterization of TaTGW-7A gene associated with grain weight in wheat via SLAF-seq-BSA. Frontiers in Plant Science 7:1902

doi: 10.3389/fpls.2016.01902
[46]

Kabir MR, Nonhebel HM. 2021. Reinvestigation of THOUSAND-GRAIN WEIGHT 6 grain weight genes in wheat and rice indicates a role in pollen development rather than regulation of auxin content in grains. Theoretical and Applied Genetics 134:2051−62

doi: 10.1007/s00122-021-03804-3
[47]

Xu H, Sun H, Dong J, Ma C, Li J, et al. 2022. The brassinosteroid biosynthesis gene TaD11-2A controls grain size and its elite haplotype improves wheat grain yields. Theoretical and Applied Genetics 135:2907−23

doi: 10.1007/s00122-022-04158-0
[48]

Cheng XJ, Xin MM, Xu RB, Chen ZY, Cai WL, et al. 2020. A single amino acid substitution in STKc_GSK3 kinase conferring semispherical grains and its implications for the origin of Triticum sphaerococcum. The Plant Cell 32:923−34

doi: 10.1105/tpc.19.00580
[49]

Mao H, Jian C, Cheng X, Chen B, Mei F, et al. 2022. The wheat ABA receptor gene TaPYL1-1B contributes to drought tolerance and grain yield by increasing water-use efficiency. Plant Biotechnology Journal 20:846−61

doi: 10.1111/pbi.13764
[50]

Chen Y, Yan Y, Wu TT, Zhang GL, Yin H, et al. 2020. Cloning of wheat keto-acyl thiolase 2B reveals a role of jasmonic acid in grain weight determination. Nature Communications 11:6266

doi: 10.1038/s41467-020-20133-z
[51]

Niaz M, Zhang L, Lv G, Hu H, Yang X, et al. 2023. Identification of TaGL1-B1 gene controlling grain length through regulation of jasmonic acid in common wheat. Plant Biotechnology Journal 21:979−89

doi: 10.1111/pbi.14009
[52]

Ma M, Wang Q, Li Z, Cheng H, Li Z, et al. 2015. Expression of TaCYP78A3, a gene encoding cytochrome P450 CYP78A3 protein in wheat (Triticum aestivum L.), affects seed size. The Plant Journal 83:312−25

doi: 10.1111/tpj.12896
[53]

Wang W, Pan Q, Tian B, He F, Chen Y, et al. 2019. Gene editing of the wheat homologs of TONNEAU1-recruiting motif encoding gene affects grain shape and weight in wheat. The Plant Journal 100:251−64

doi: 10.1111/tpj.14440
[54]

Sajjad M, Ma X, Habibullah Khan S, Shoaib M, Song Y, et al. 2017. TaFlo2-A1, an ortholog of rice Flo2, is associated with thousand grain weight in bread wheat (Triticum aestivum L.). BMC Plant Biology 17:164

doi: 10.1186/s12870-017-1114-3
[55]

Wu YP, Pu CH, Lin HY, Huang HY, Huang YC, et al. 2015. Three novel alleles of FLOURY ENDOSPERM2 (FLO2) confer dull grains with low amylose content in rice. Plant Science 233:44−52

doi: 10.1016/j.plantsci.2014.12.011
[56]

Ma L, Li T, Hao C, Wang Y, Chen X, et al. 2016. TaGS5-3A, a grain size gene selected during wheat improvement for larger kernel and yield. Plant Biotechnology Journal 14:1269−80

doi: 10.1111/pbi.12492
[57]

Du C, Gao H, Liu S, Ma D, Feng J, et al. 2020. Molecular cloning and functional characterisation of the galactolipid biosynthetic gene TaMGD in wheat grain. Plant Physiology and Biochemistry 154:66−74

doi: 10.1016/j.plaphy.2020.04.033
[58]

Dale EM, Housley TL. 1986. Sucrose synthase activity in developing wheat endosperms differing in maximum weight. Plant Physiology 82:7−10

doi: 10.1104/pp.82.1.7
[59]

Geng J, Li L, Lv Q, Zhao Y, Liu Y, et al. 2017. TaGW2-6A allelic variation contributes to grain size possibly by regulating the expression of cytokinins and starch-related genes in wheat. Planta 246:1153−63

doi: 10.1007/s00425-017-2759-8
[60]

Wang S, Wu K, Yuan Q, Liu X, Liu Z, et al. 2012. Control of grain size, shape and quality by OsSPL16 in rice. Nature Genetics 44:950−54

doi: 10.1038/ng.2327
[61]

Wang S, Li S, Liu Q, Wu K, Zhang J, et al. 2015. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nature Genetics 47:949−54

doi: 10.1038/ng.3352
[62]

Wang J, Chen Z, Zhang Q, Meng S, Wei C. 2020. The NAC transcription factors OsNAC20 and OsNAC26 regulate starch and storage protein synthesis. Plant Physiology 184:1775−91

doi: 10.1104/pp.20.00984
[63]

Zhang Z, Dong J, Ji C, Wu Y, Messing J. 2019. NAC-type transcription factors regulate accumulation of starch and protein in maize seeds. Proceedings of the National Academy of Sciences of the United States of America 116:11223−8

doi: 10.1073/pnas.1904995116
[64]

Li Q, Wang J, Ye J, Zheng X, Xiang X, et al. 2017. The maize imprinted gene floury3 encodes a PLATZ protein required for tRNA and 5S rRNA transcription through interaction with RNA polymerase III. The Plant Cell 29:2661−75

doi: 10.1105/tpc.17.00576
[65]

Smalle J, Vierstra RD. 2004. The ubiquitin 26S proteasome proteolytic pathway. Annual Review of Plant Biology 55:555−90

doi: 10.1146/annurev.arplant.55.031903.141801
[66]

Xia T, Li N, Dumenil J, Li J, Kamenski A, et al. 2013. The ubiquitin receptor DA1 interacts with the E3 ubiquitin ligase DA2 to regulate seed and organ size in Arabidopsis. The Plant Cell 25:3347−59

doi: 10.1105/tpc.113.115063
[67]

Li Q, Li L, Liu Y, Lv Q, Zhang H, et al. 2017. Influence of TaGW2-6A on seed development in wheat by negatively regulating gibberellin synthesis. Plant Science 263:226−35

doi: 10.1016/j.plantsci.2017.07.019
[68]

Coello P, Hey SJ, Halford NG. 2011. The sucrose non-fermenting-1-related (SnRK) family of protein kinases: potential for manipulation to improve stress tolerance and increase yield. Journal of Experimental Botany 62:883−93

doi: 10.1093/jxb/erq331
[69]

Kong L, Guo H, Sun M. 2015. Signal transduction during wheat grain development. Planta 241:789−801

doi: 10.1007/s00425-015-2260-1
[70]

Paul MJ, Watson A, Griffiths CA. 2020. Trehalose 6-phosphate signalling and impact on crop yield. Biochemical Society Transactions 48:2127−37

doi: 10.1042/BST20200286
[71]

Martínez-Barajas E, Delatte T, Schluepmann H, de Jong GJ, Somsen GW, et al. 2011. Wheat grain development is characterized by remarkable trehalose 6-phosphate accumulation pregrain filling: tissue distribution and relationship to SNF1-related protein kinase1 activity. Plant Physiology 156:373−81

doi: 10.1104/pp.111.174524
[72]

Zhang Y, Primavesi LF, Jhurreea D, Andralojc PJ, Mitchell RAC, et al. 2009. Inhibition of SNF1-related protein kinase1 activity and regulation of metabolic pathways by trehalose-6-phosphate. Plant Physiology 149:1860−71

doi: 10.1104/pp.108.133934
[73]

Halford NG, Hey S, Jhurreea D, Laurie S, McKibbin RS, et al. 2003. Metabolic signalling and carbon partitioning: role of Snf1-related (SnRK1) protein kinase. Journal of Experimental Botany 54:467−75

doi: 10.1093/jxb/erg038
[74]

Ardito F, Giuliani M, Perrone D, Troiano G, Lo Muzio L. 2017. The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy. International Journal of Molecular Medicine 40:271−80

doi: 10.3892/ijmm.2017.3036
[75]

Qi P, Lin YS, Song XJ, Shen JB, Huang W, et al. 2012. The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating Cyclin-T1;3. Cell Research 22:1666−80

doi: 10.1038/cr.2012.151
[76]

Zhang X, Wang J, Huang J, Lan H, Wang C, et al. 2012. Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice. Proceedings of the National Academy of Sciences of the United States of America 109:21534−39

doi: 10.1073/pnas.1219776110
[77]

Catalá C, Howe KJ, Hucko S, Rose JKC, Thannhauser TW. 2011. Towards characterization of the glycoproteome of tomato (Solanum lycopersicum) fruit using Concanavalin A lectin affinity chromatography and LC-MALDI-MS/MS analysis. Proteomics 11:1530−44

doi: 10.1002/pmic.201000424
[78]

Rose JKC, Lee SJ. 2010. Straying off the highway: trafficking of secreted plant proteins and complexity in the plant cell wall proteome. Plant Physiology 153:433−36

doi: 10.1104/pp.110.154872
[79]

Aebi M. 2013. N-linked protein glycosylation in the ER. Biochimica et Biophysica Acta - Molecular Cell Research 1833:2430−37

doi: 10.1016/j.bbamcr.2013.04.001
[80]

Li N, Xu R, Duan P, Li Y. 2018. Control of grain size in rice. Plant Reproduction 31:237−51

doi: 10.1007/s00497-018-0333-6
[81]

Trusov Y, Chakravorty D, Botella JR. 2012. Diversity of heterotrimeric G-protein γ subunits in plants. BMC Research Notes 5:608

doi: 10.1186/1756-0500-5-608
[82]

Fan C, Xing Y, Mao H, Lu T, Han B, et al. 2006. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theoretical and Applied Genetics 112:1164−71

doi: 10.1007/s00122-006-0218-1
[83]

Song J, Jiang L, Jameson PE. 2012. Co-ordinate regulation of cytokinin gene family members during flag leaf and reproductive development in wheat. BMC Plant Biology 12:78

doi: 10.1186/1471-2229-12-78
[84]

Yang J, Zhang J, Wang Z, Zhu Q, Liu L. 2002. Abscisic acid and cytokinins in the root exudates and leaves and their relationship to senescence and remobilization of carbon reserves in rice subjected to water stress during grain filling. Planta 215:645−52

doi: 10.1007/s00425-002-0789-2
[85]

Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, et al. 2005. Cytokinin oxidase regulates rice grain production. Science 309:741−5

doi: 10.1126/science.1113373
[86]

Bartrina I, Otto E, Strnad M, Werner T, Schmülling T. 2011. Cytokinin regulates the activity of reproductive meristems, flower organ size, ovule formation, and thus seed yield in Arabidopsis thaliana. The Plant Cell 23:69−80

doi: 10.1105/tpc.110.079079
[87]

Ma X, Feng DS, Wang HG, Li XF, Kong LR. 2011. Cloning and expression analysis of wheat cytokinin oxidase/dehydrogenase gene TaCKX3. Plant Molecular Biology Reporter 29:98−105

doi: 10.1007/s11105-010-0209-x
[88]

Weijers D, Friml J. 2009. SnapShot: auxin signaling and transport. Cell 136:1172.e1

doi: 10.1016/j.cell.2009.03.009
[89]

Luo J, Zhou JJ, Zhang JZ. 2018. Aux/IAA gene family in plants: molecular structure, regulation, and function. International Journal of Molecular Sciences 19:259

doi: 10.3390/ijms19010259
[90]

Jia M, Li Y, Wang Z, Tao S, Sun G, et al. 2021. TaIAA21 represses TaARF25-mediated expression of TaERFs required for grain size and weight development in wheat. The Plant Journal 108:1754−67

doi: 10.1111/tpj.15541
[91]

Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, et al. 2013. Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nature Genetics 45:707−11

doi: 10.1038/ng.2612
[92]

Wu CY, Trieu A, Radhakrishnan P, Kwok SF, Harris S, et al. 2008. Brassinosteroids regulate grain filling in rice. The Plant Cell 20:2130−45

doi: 10.1105/tpc.107.055087
[93]

Xu C, Liu Y, Li Y, Xu X, Xu C, et al. 2015. Differential expression of GS5 regulates grain size in rice. Journal of Experimental Botany 66:2611−23

doi: 10.1093/jxb/erv058
[94]

Fujii H, Chinnusamy V, Rodrigues A, Rubio S, Antoni R, et al. 2009. In vitro reconstitution of an abscisic acid signalling pathway. Nature 462:660−64

doi: 10.1038/nature08599
[95]

Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, et al. 2009. Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324:1064−68

doi: 10.1126/science.1172408
[96]

Park SY, Peterson FC, Mosquna A, Yao J, Volkman BF, et al. 2015. Agrochemical control of plant water use using engineered abscisic acid receptors. Nature 520:545−48

doi: 10.1038/nature14123
[97]

Lumba S, Toh S, Handfield LF, Swan M, Liu R, et al. 2014. A mesoscale abscisic acid hormone interactome reveals a dynamic signaling landscape in Arabidopsis. Developmental Cell 29:360−72

doi: 10.1016/j.devcel.2014.04.004
[98]

Yoshida T, Mogami J, Yamaguchi-Shinozaki K. 2014. ABA-dependent and ABA-independent signaling in response to osmotic stress in plants. Current Opinion In Plant Biology 21:133−39

doi: 10.1016/j.pbi.2014.07.009
[99]

She KC, Kusano H, Koizumi K, Yamakawa H, Hakata M, et al. 2010. A novel factor FLOURY ENDOSPERM2 is involved in regulation of rice grain size and starch quality. The Plant Cell 22:3280−94

doi: 10.1105/tpc.109.070821