[1] |
Editorial Committee of Chinese Pharmacopoeia. 2020. Pharmacopoeia of the People's Republic of China. Beijing: China Medical Science and Technology Press. 139 pp. |
[2] |
Nugent-Head J. 2014. The first Materia Medica: The Shen Nong Ben Cao Jing. Journal of Chinese Medicine 22:6 |
[3] |
Feng WM, Liu P, Yan H, Yu G, Guo ZX, et al. 2020. Transcriptomic data analyses of wild and cultivated Angelica sinensis root by high-throughput sequencing technology. China Journal of Chinese Medica 45:1879−86 doi: 10.19540/j.cnki.cjcmm.20200208.101 |
[4] |
Li M, Kang T, Jin L, Wei J. 2020. Research progress on bolting and flowering of Angelica sinensis and regulation pathways. Chinese Traditional and Herbal Drugs 51:5894−99 doi: 10.7501/j.issn.0253-2670.2020.22.029 |
[5] |
Zhang HY, Bi WG, Yu Y, Liao WB. 2012. Angelica sinensis (Oliv.) Diels in China: distribution, cultivation, utilization and variation. Genetic Resources and Crop Evolution 59:607−13 doi: 10.1007/s10722-012-9795-9 |
[6] |
Xu X, Zhang X, Chen J, Zhao W, Jin L. 2020. Study on ecological suitability of Angelica sinensis in Gansu Province. Chinese Traditional and Herbal Drugs 51(12):3304−7 |
[7] |
Hook ILI. 2014. Danggui to Angelica sinensis root: Are potential benefits to European women lost in translation? A review Journal of Ethnopharmacology 152:1−13 doi: 10.1016/j.jep.2013.12.018 |
[8] |
Long Y, Li D, Yu S, Shi A, Deng J, et al. 2022. Medicine-food herb: Angelica sinensis, a potential therapeutic hope for Alzheimer's disease and related complications. Food & Function 13:8783−803 doi: 10.1039/d2fo01287a |
[9] |
Chen Y, Li Q, Qiu D. 2022. The dynamic accumulation rules of chemical components in different medicinal parts of Angelica sinensis by GC-MS. Molecules 27:4617 doi: 10.3390/molecules27144617 |
[10] |
Hsiao CY, Hung CY, Tsai TH, Chak KF. 2012. A study of the wound healing mechanism of a traditional Chinese medicine, Angelica sinensis, using a proteomic approach. Evidence-based Complementary and Alternative Medicine 2012:467531 doi: 10.1155/2012/467531 |
[11] |
Lee J, Choi YY, Kim MH, Han JM, Lee JE, et al. 2016. Topical application of Angelica sinensis improves pruritus and skin inflammation in mice with atopic dermatitis-like symptoms. Journal of Medicinal Food 19:98−105 doi: 10.1089/jmf.2015.3489 |
[12] |
Wu Z, Uchi H, Morino-Koga S, Shi W, Furue M. 2015. Z-ligustilide ameliorated ultraviolet B-induced oxidative stress and inflammatory cytokine production in human keratinocytes through upregulation of Nrf2/HO-1 and suppression of NF-κB pathway. Experimental Dermatology 24:703−8 doi: 10.1111/exd.12758 |
[13] |
Shang H, Sun Z, Wang F, Li Y, Cao Z, et al. 2021. Effects of sowing time and seedling density on quality of Angelica sinensis seedlings and output value of its patent medicine. Modern Chinese Medicine 23:326−31 |
[14] |
Batiha GE-S, Shaheen HM, Elhawary EA, Mostafa NM, Eldahshan OA, et al. 2023. Phytochemical constituents, folk medicinal uses, and biological activities of genus Angelica: a review. Molecules 28:267 doi: 10.3390/molecules28010267 |
[15] |
Sheu SJ, Ho YS, Chen YP, Hsu HY. 1987. Analysis and processing of Chinese herbal drugs; VI. The study of Angelica radix. Planta medica 53:377−78 doi: 10.1055/s-2006-962742 |
[16] |
Zhang Y, Li Q, Feng Y, Yang L, Wang Q, et al. 2021. Simultaneous determination of eight chemical components in angelicae sinensis radix and its herbal products by QAMS. Journal of Analytical Methods in Chemistry 2021:7178982 doi: 10.1155/2021/7178982 |
[17] |
Zhang L, Lv J, Chen H, Duan J, Liu J. 2016. Research progress of structures and pharmacological activities of phthalides from Angelica sinensis. China Journal of Chinese Materia Medica 41:167−76 doi: 10.4268/cjcmm20160203 |
[18] |
Sarker SD, Nahar L. 2004. Natural medicine: The genus Angelica. Current Medicinal Chemistry 11:1479−500 doi: 10.2174/0929867043365189 |
[19] |
Jiang H, Zhao X, Lin W, Li L, Li J, et al. 2019. Qualitative analysis of multiple cumarins in Angelicae sinensis radix based on HPLC-Q-TOF-MS /MS. Chinese Journal of Experimental Traditional Medical Formulae 25:157−62 doi: 10.13422/j.cnki.syfjx.20190918 |
[20] |
Li Z, Sun Y, Wang X, Dong X, Zhang T, et al. 2019. Relationship between key environmental factors and profiling of volatile compounds during cucumber fruit development under protected cultivation. Food Chemistry 290:308−15 doi: 10.1016/j.foodchem.2019.03.140 |
[21] |
Tavakoli M, Tarkesh Esfahani M, Soltani S, Karamian R, Aliarabi H. 2022. Effects of ecological factors on phenolic compounds in Salvia multicaulis Vahl (Lamiaceae). Biochemical Systematics and Ecology 104:104484 doi: 10.1016/j.bse.2022.104484 |
[22] |
Wang M, Cheng X, Wang G, Ming Y, Zeng J, et al. 2023. Cloning and expression patterns of coumarate-3-hydroxylase gene from Angelica sinensis and its correlation with content of ferulic acid. Chinese Journal of Experimental Traditional Medical Formulae 29:161−66 doi: 10.13422/j.cnki.syfjx.20221313 |
[23] |
Zhang P, Hou Y, Su M, Xu D, Song T, et al. 2021. Cloning and expression analysis of caffeic acid-O-methyltransferase gene in Angelica sinensis. Chinese Wild Plant Resources 40:20−28 |
[24] |
Han X, Li C, Sun S, Ji J, Nie B, et al. 2022. The chromosome-level genome of female ginseng (Angelica sinensis) provides insights into molecular mechanisms and evolution of coumarin biosynthesis. The Plant Journal 112:1224−37 doi: 10.1111/tpj.16007 |
[25] |
Deng Y, Lu S. 2017. Biosynthesis and regulation of phenylpropanoids in plants. Critical Reviews in Plant Sciences 36:257−90 doi: 10.1080/07352689.2017.1402852 |
[26] |
Yang J, Li W-h, An R, Wang Y-l, Xu Y, et al. 2017. Differentially expressed genes in heads and tails of Angelica sinensis diels: Focusing on ferulic acid metabolism. Chinese Journal of Integrative Medicine 23:779−85 doi: 10.1007/s11655-016-2603-1 |
[27] |
Yang J, Zhang C, Li W, Zhang T, Fan G, et al. 2021. Comprehensive analysis of transcriptomics and metabolomics between the heads and tails of Angelica Sinensis: Genes related to phenylpropanoid biosynthesis pathway. Combinatorial Chemistry & High Throughput Screening 24:1417−27 doi: 10.2174/1386207323999201103221952 |
[28] |
Xu R, Xu J, Li Y, Dai Y, Zhang S, et al. 2020. Integrated chemical and transcriptomic analyses unveils synthetic characteristics of different medicinal root parts of Angelica sinensis. Chinese Herbal Medicines 12:19−28 doi: 10.1016/j.chmed.2019.07.003 |
[29] |
Yang J, Wan B, Yao W, Gong D, Peng Q, et al. 2019. Study on the biological pathway of effective difference in the head and tail of Angelica sinensis by non-targeted UPLC-MS metabolomics profile. West China Journal of Pharmaceutical Sciences 34:617−22 |
[30] |
Zhu T, Zhang M, Su H, Li M, Wang Y, et al. 2022. Integrated metabolomic and transcriptomic analysis reveals differential mechanism of flavonoid biosynthesis in two cultivars of Angelica sinensis. Molecules 27:306 doi: 10.3390/molecules27010306 |
[31] |
Yu G, Zhou Y, Yu J, Hu X, Tang Y, et al. 2019. Transcriptome and digital gene expression analysis unravels the novel mechanism of early flowering in Angelica sinensis. Scientific Reports 9:10035 doi: 10.1038/s41598-019-46414-2 |
[32] |
Feng WM, Liu P, Yan H, Yu G, Zhang S, et al. 2022. Investigation of enzymes in the phthalide biosynthetic pathway in Angelica sinensis using integrative metabolite profiles and transcriptome analysis. Frontiers in Plant Science 13:928760 doi: 10.3389/fpls.2022.928760 |
[33] |
Xu L, Zhu T, Jin L, Kang G, Zhang M, et al. 2023. Differential analysis of flavonoid-regulated genes in two cultivars of Angelica sinensis based on hybrid sequencing strategy. Chinese Journal of Experimental Traditional Medical Formulae 29:141−47 doi: 10.13422/j.cnki.syfjx.20221514 |
[34] |
Yang J, Zhang Y, Wan B, Fan G, Peng Q. 2019. Exploration of the ferulic acid metabolic pattern in the head and tail of Angelica sinensis. Chinese Journal of Basic Medicine in Traditional Chinese Medicine 25:991−93 doi: 10.19945/j.cnki.issn.1006-3250.2019.07.042 |
[35] |
Yang J, Wang JQ, Ding W, Li W, Liu H. 2015. Study on transcriptome characteristic of Angelica sinensis radix by Illumina HiSeq 2000 sequencing. Chinese Traditional and Herbal Drugs 46:1216−22 doi: 10.7501/j.issn.0253-2670.2015.08.022 |
[36] |
Li J, Li ML, Zhu TT, Zhang XN, Li MF, et al. 2021. Integrated transcriptomics and metabolites at different growth stages reveals the regulation mechanism of bolting and flowering of Angelica sinensis. Plant Biology 23:574−82 doi: 10.1111/plb.13249 |
[37] |
Gao X, Guo F, Chen Y, Bai G, Liu Y, et al. 2021. Full-length transcriptome analysis provides new insights into the early bolting occurrence in medicinal Angelica sinensis. Scientific Reports 11:13000 doi: 10.1038/s41598-021-92494-4 |
[38] |
Guo L, Zong Y, Xi X, Li J, Liu B. 2021. RNA-seq screening to control the main candidate genes for bolting of Angelica sinensis. Molecular Plant Breeding 19:448−58 doi: 10.13271/j.mpb.019.000448 |
[39] |
Luo M, Liu X, Su H, Li M, Li M, et al. 2022. Regulatory networks of flowering genes in Angelica sinensis during vernalization. Plants 11:1355 doi: 10.3390/plants11101355 |
[40] |
Wang Z, Wang Y, Luo J, Li L, Jin L, et al. 2022. Analysis on premature bolting related genes of Angelica sinensis based on high-throughput sequencing. Modern Chinese Medicine 24:243−48 doi: 10.13313/j.issn.1673-4890.20201123006 |
[41] |
Liu X, Luo M, Li M, Wei J. 2022. Transcriptomic analysis reveals LncRNAs associated with flowering of Angelica sinensis during vernalization. Current Issues in Molecular Biology 44:1867−88 doi: 10.3390/cimb44050128 |
[42] |
Liu D, Cui X, Huang T, Li M, Wei J. 2023. Analysis on gibberellins metabolic level, key enzyme genes clone and expression pattern during bolting and flowering plants in Angelica sinensis. Chinese Traditional and Herbal Drugs 54:222−34 doi: 10.7501/j.issn.0253-2670.2023.01.024 |
[43] |
Peng T, Wang Y, Yang T, Wang F, Luo J, et al. 2021. Physiological and biochemical responses, and comparative transcriptome profiling of two Angelica sinensis cultivars under enhanced ultraviolet-B radiation. Frontiers in Plant Science 12:805407 doi: 10.3389/fpls.2021.805407 |
[44] |
Amasino RM, Michaels SD. 2010. The timing of flowering. Plant Physiology 154:516−20 doi: 10.1104/pp.110.161653 |
[45] |
Lu Z, Zhang J, Ren L, Huang H, Ma Z, et al. 2011. Analysis on physiological and biochemical characteristics of bolting Angelica sinensis plant. Chinese Traditional and Herbal Drugs 42(11):2326−29 |
[46] |
Bai Z, Li M, Wang J, Zhan X. 2019. Study on relativity between the changes of secondary metabolites contents with early bolting of Angelica sinensis. Modern Chinese Medicine 21:1532−36 doi: 10.13313/j.issn.1673-4890.20190218015 |
[47] |
Li M, Liu X, Wei J, Zhang Z, Chen S, et al. 2020. Selection of high altitude planting area of Angelica sinensis based on biomass, bioactive compounds accumulation and antioxidant capacity. Chinese Traditional and Herbal Drugs 51:474−81 doi: 10.7501/j.issn.0253-2670.2020.02.026 |
[48] |
Jiang R, Chen X, Liao X, Peng D, Han X, et al. 2022. A chromosome-level genome of the camphor tree and the underlying genetic and climatic factors for its top-geoherbalism. Frontiers in Plant Science 13:827890 doi: 10.3389/fpls.2022.827890 |
[49] |
Zhao KJ, Dong TTX, Tu PF, Song ZH, Lo CK, et al. 2003. Molecular genetic and chemical assessment of radix Angelica (Danggui) in China. Journal of Agricultural and Food Chemistry 51:2576−83 doi: 10.1021/jf026178h |
[50] |
Wen Z, Liu A, Jing S, Song J, Yan Y, et al. 2018. Qualitative and quantitative identification of Angelicae sinensis and Levistici officinalis. Chinese Traditional Patent Medicine 40(12):2719−23 |
[51] |
Bang K, Yu HS, Koo D, Cho JH, Park HW, et al. 2002. Selection of RAPD marker to discriminate the bolting-resistant varieties and commercial dried medicinal materials of Angelica species. The Korean Journal of Medicinal Crop Science 10:46−50 |
[52] |
Mei Z, Zhang C, Khan MA, Zhu Y, Tania M, et al. 2015. Efficiency of improved RAPD and ISSR markers in assessing genetic diversity and relationships in Angelica sinensis (Oliv.) Diels varieties of China. Electronic Journal of Biotechnology 18:96−102 doi: 10.1016/j.ejbt.2014.12.006 |
[53] |
Zhang H, Liao W. 2014. AFLP analysis on genetic diversity of Angelica sinensis. Journal of Chinese medicinal materials 37:572−75 |
[54] |
Liao C, Downie SR, Li Q, Yu Y, He X, et al. 2013. New insights into the phylogeny of Angelica and its Allies (Apiaceae) with emphasis on east asian species, inferred from nrDNA, cpDNA, and morphological evidence. Systematic Botany 38:266−81 doi: 10.1600/036364413X662060 |
[55] |
Yan M, Fang M, Zhu J, Yang Y, Wang R, et al. 2016. Identification of medicinal plants in Angelica L. based on ITS barcode label. Chinese Traditional and Herbal Drugs 47:974−81 |
[56] |
Zhang H, Luo L, Yu Y, Liao W. 2014. rDNA ITS sequence analysis of Angelica sinensis of different germplasm and phenotype, Angelica acutiloba and Angelica paeoniifolia. Guiding Journal of Traditional Chinese Medicine and Pharmacy 20(4):78−79 doi: 10.13862/j.cnki.cn43-1446/r.2014.04.033 |
[57] |
Chu H, Jin J, Li H, Li P, Chen C, et al. 2009. ITS sequence analysis of Angelica from different source in Gansu province. Chinese Journal of Information on Traditional Chinese Medicine 16(8):43−44 doi: 10.3969/j.issn.1005-5304.2009.08.019 |
[58] |
Lu Y, Cheng T, Zhu T, Jiang D, Zhou S, et al. 2015. Isolation and characterization of 18 polymorphic microsatellite markers for the "Female Ginseng" Angelica sinensis (Apiaceae) and cross-species amplification. Biochemical Systematics and Ecology 61:488−92 doi: 10.1016/j.bse.2015.07.013 |
[59] |
Tan HS, Hu DD, Song JZ, Xu Y, Cai SF, et al. 2015. Distinguishing radix Angelica sinensis from different regions by HS-SFME/GC-MS. Food Chemistry 186:200−6 doi: 10.1016/j.foodchem.2014.05.152 |
[60] |
Yan H, Duan JA, Qian DW, Su S, Song B, et al. 2011. Correlation analysis and evaluation of inorganic elements in Angelica sinensis and its correspondence soil from different regions. Journal of Chinese Medicinal Materials 34(4):512−16 |
[61] |
Jeong SY, Kim HM, Lee KH, Kim KY, Huang DS, et al. 2015. Quantitative analysis of marker compounds in Angelica gigas, Angelica sinensis, and Angelica acutiloba by HPLC/DAD. Chemical and Pharmaceutical Bulletin 63:504−11 doi: 10.1248/cpb.c15-00081 |
[62] |
Chan PH, Zhang WL, Lau CH, Cheung CY, Keun HC, et al. 2014. Metabonomic analysis of water extracts from different Angelica roots by 1H-nuclear magnetic resonance spectroscopy. Molecules 19:3460−70 doi: 10.3390/molecules19033460 |
[63] |
Zhou SS, Xu J, Tsang CK, Yip KM, Yeung WP, et al. 2018. Comprehensive quality evaluation and comparison of Angelica sinensis radix and Angelica acutiloba radix by integrated metabolomics and glycomics. Journal of Food and Drug Analysis 26:1122−37 doi: 10.1016/j.jfda.2018.01.015 |
[64] |
Olsen KM, Wendel JF. 2013. A bountiful harvest: Genomic insights into crop domestication phenotypes. Annual Review of Plant Biology 64:47−70 doi: 10.1146/annurev-arplant-050312-120048 |
[65] |
Tang S, Yang H, Huang L. 2010. Discuss on effect of physical environmental factors on nature of Chinese materia medica. China Journal of Chinese Materia Medica 35:126−28 doi: 10.4268/cjcmm20100127 |
[66] |
Huang L, Guo L. 2007. Secondary metabolites accumulating and geoherbs formation under enviromental stress. China Journal of Chinese Materia Medica 32:277−80 doi: 10.3321/j.issn:1001-5302.2007.04.001 |
[67] |
Shi C, Wang X, Xu J, Zhang Y, Qi B, Jun L. 2021. Dissecting the molecular mechanism of russeting in sand pear (Pyrus pyrifolia Nakai) by metabolomics, transcriptomics, and proteomics. The Plant Journal 108:1644−61 doi: 10.1111/tpj.15532 |
[68] |
Li C, Wood JC, Vu AH, Hamilton JP, Rodriguez Lopez CE, et al. 2023. Single-cell multi-omics in the medicinal plant Catharanthus roseus. Nature Chemical Biology 19:1031−41 doi: 10.1038/s41589-023-01327-0 |
[69] |
Huang T, Liu D, Cui X, Li M, Jin L, et al. 2023. In vitro bioactive metabolite production and plant regeneration of medicinal plant Angelica sinensis. Industrial Crops and Products 194:116276 doi: 10.1016/j.indcrop.2023.116276 |