[1]

Ashraf M, Wu L. 1994. Breeding for salinity tolerance in plants. Critical Reviews in Plant Sciences 13:17−42

doi: 10.1080/07352689409701906
[2]

Croser C, Renault S, Franklin J, Zwiazek J. 2001. The effect of salinity on the emergence and seedling growth of Picea mariana, Picea glauca, and Pinus banksiana. Environmental Pollution 115:9−16

doi: 10.1016/S0269-7491(01)00097-5
[3]

Tang X, Mu X, Shao H, Wang H, Brestic M. 2015. Global plant-responding mechanisms to salt stress: physiological and molecular levels and implications in biotechnology. Critical Reviews in Biotechnology 35:425−37

doi: 10.3109/07388551.2014.889080
[4]

Munns R, Gilliham M. 2015. Salinity tolerance of crops – what is the cost? New Phytologist 208:668−73

doi: 10.1111/nph.13519
[5]

Acosta-Motos JR, Diaz-Vivancos P, Álvarez S, Fernández-García N, Sanchez-Blanco MJ, et al. 2015. Physiological and biochemical mechanisms of the ornamental Eugenia myrtifolia L. plants for coping with NaCl stress and recovery. Planta 242:829−46

doi: 10.1007/s00425-015-2315-3
[6]

Li X, Wei Y, Moore KJ, Michaud R, Viands DR, et al. 2011. Association mapping of biomass yield and stem composition in a tetraploid alfalfa breeding population. The Plant Genome 4:24−35

doi: 10.3835/plantgenome2010.09.0022
[7]

Luo D, Zhou Q, Wu Y, Chai X, Liu W, et al. 2019. Full-length transcript sequencing and comparative transcriptomic analysis to evaluate the contribution of osmotic and ionic stress components towards salinity tolerance in the roots of cultivated alfalfa (Medicago sativa L.). BMC Plant Biology 19:32

doi: 10.1186/s12870-019-1630-4
[8]

Ma Q, Xu X, Wang W, Zhao L, Ma D, et al. 2021. Comparative analysis of alfalfa (Medicago sativa L.) seedling transcriptomes reveals genotype-specific drought tolerance mechanisms. Plant Physiology Biochemistry 166:203−14

doi: 10.1016/j.plaphy.2021.05.008
[9]

Sun W, Ma Z, Liu M. 2020. Cytochrome P450 family: genome-wide identification provides insights into the rutin synthesis pathway in Tartary buckwheat and the improvement of agricultural product quality. International Journal of Biological Macromolecules 164:4032−45

doi: 10.1016/j.ijbiomac.2020.09.008
[10]

Nelson D, Werck-Reichhart D. 2011. A P450-centric view of plant evolution. The Plant Journal 66:194−211

doi: 10.1111/j.1365-313X.2011.04529.x
[11]

Khanom S, Jang J, Lee OR. 2019. Overexpression of ginseng cytochrome P450 CYP736A12 alters plant growth and confers phenylurea herbicide tolerance in Arabidopsis. Journal of Ginseng Research 43:645−53

doi: 10.1016/j.jgr.2019.04.005
[12]

Bak S, Paquette SM, Morant M, Morant AV, Saito S, et al. 2006. Cyanogenic glycosides: a case study for evolution and application of cytochromes P450. Phytochemistry Reviews 5:309−29

doi: 10.1007/s11101-006-9033-1
[13]

Podust LM, Sherman DH. 2012. Diversity of P450 enzymes in the biosynthesis of natural products. Natural Product Reports 29:1251−66

doi: 10.1039/c2np20020a
[14]

Ghosh S. 2017. Triterpene structural diversification by plant cytochrome P450 enzymes. Frontiers in Plant Science 8:1886

doi: 10.3389/fpls.2017.01886
[15]

Banerjee A, Hamberger B. 2018. P450s controlling metabolic bifurcations in plant terpene specialized metabolism. Phytochemistry Reviews 17:81−111

doi: 10.1007/s11101-017-9530-4
[16]

Hansen CC, Nelson DR, Møller BL, Werck-Reichhart D. 2021. Plant cytochrome P450 plasticity and evolution. Molecular Plant 14:1244−65

doi: 10.1016/j.molp.2021.06.028
[17]

Shen C, Du H, Chen Z, Lu H, Zhu F, et al. 2020. The chromosome-level genome sequence of the autotetraploid alfalfa and resequencing of core germplasms provide genomic resources for alfalfa research. Molecular Plant 13:1250−61

doi: 10.1016/j.molp.2020.07.003
[18]

Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, et al. 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant 13:1194−202

doi: 10.1016/j.molp.2020.06.009
[19]

Zhang X, Henriques R, Lin SS, Niu QW, Chua NH. 2006. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nature Protocals 1:641−46

doi: 10.1038/nprot.2006.97
[20]

Mainali HR, Chapman P, Dhaubhadel S. 2014. Genome-wide analysis of Cyclophilin gene family in soybean (Glycine max). BMC Plant Biology 14:282

doi: 10.1186/s12870-014-0282-7
[21]

Xiong R, He T, Wang Y, Liu S, Gao Y, et al. 2021. Genome and transcriptome analysis to understand the role diversification of cytochrome P450 gene under excess nitrogen treatment. BMC Plant Biology 21:447

doi: 10.1186/s12870-021-03224-x
[22]

Wei K, Chen H. 2018. Global identification, structural analysis and expression characterization of cytochrome P450 monooxygenase superfamily in rice. BMC Genomics 19:35

doi: 10.1186/s12864-017-4425-8
[23]

Levsh O, Pluskal T, Carballo V, Mitchell AJ, Weng JK. 2019. Independent evolution of rosmarinic acid biosynthesis in two sister families under the Lamiids clade of flowering plants. Journal of Biological Chemistry 294:15193−205

doi: 10.1074/jbc.RA119.010454
[24]

Mao G, Seebeck T, Schrenker D, Yu O. 2013. CYP709B3, a cytochrome P450 monooxygenase gene involved in salt tolerance in Arabidopsis thaliana. BMC Plant Biology 13:169

doi: 10.1186/1471-2229-13-169
[25]

Balusamy SR, Rahimi S, Yang DC. 2019. Characterization of squalene-induced PgCYP736B involved in salt tolerance by modulating key genes of abscisic acid biosynthesis. International Journal of Biological Macromolecules 121:796−805

doi: 10.1016/j.ijbiomac.2018.10.058
[26]

Krishnamurthy P, Vishal B, Ho WJ, Lok FCJ, Lee FSM, et al. 2020. Regulation of a cytochrome P450 gene CYP94B1 by WRKY33 transcription factor controls apoplastic barrier formation in roots to confer salt tolerance. Plant Physiology 184:2199−215

doi: 10.1104/pp.20.01054
[27]

Wang L, Wen S, Wang R, Wang C, Gao B, et al. 2021. PagWOX11/12a activates PagCYP736A12 gene that facilitates salt tolerance in poplar. Plant Biotechnology Journal 19:2249−60

doi: 10.1111/pbi.13653
[28]

Wang C, Yang Y, Wang H, Ran X, Li B, et al. 2016. Ectopic expression of a cytochrome P450 monooxygenase gene PtCYP714A3 from Populus trichocarpa reduces shoot growth and improves tolerance to salt stress in transgenic rice. Plant Biotechnology Journal 14:1838−51

doi: 10.1111/pbi.12544
[29]

Kim SK, You YN, Park JC, Joung Y, Kim BG, et al. 2012. The rice thylakoid lumenal cyclophilin OsCYP20-2 confers enhanced environmental stress tolerance in tobacco and Arabidopsis. Plant Cell Reports 31:417−26

doi: 10.1007/s00299-011-1176-x
[30]

Kumari S, Joshi R, Singh K, Roy S, Tripathi AK, et al. 2015. Expression of a cyclophilin OsCyp2-P isolated from a salt-tolerant landrace of rice in tobacco alleviates stress via ion homeostasis and limiting ROS accumulation. Functional & Integrative Genomics 15:395−412

doi: 10.1007/s10142-014-0429-5
[31]

Zhu C, Wang Y, Li Y, Bhatti KH, Tian Y, et al. 2011. Overexpression of a cotton cyclophilin gene (GhCyp1) in transgenic tobacco plants confers dual tolerance to salt stress and Pseudomonas syringae pv. tabaci infection. Plant Physiology Biochemistry 49:1264−71

doi: 10.1016/j.plaphy.2011.09.001
[32]

Sekhar K, Priyanka B, Reddy VD, Rao KV. 2010. Isolation and characterization of a pigeonpea cyclophilin (CcCYP) gene, and its over-expression in Arabidopsis confers multiple abiotic stress tolerance. Plant, Cell & Environment 33:1324−38

doi: 10.1111/j.1365-3040.2010.02151.x