[1]

Maji S, Dwivedi DH, Singh N, Kishor S, Gond M. 2020. Agricultural waste: Its impact on environment and management approaches. In Emerging Eco-friendly Green Technologies for Wastewater Treatment, Microorganisms for Sustainability, eds. Bharagava R. vol. 18. Singapore: Springer. pp. 329–51. https://doi.org/10.1007/978-981-15-1390-9_15

[2]

Nuwarapaksha TD, Udumann SS, Dissanayaka DMNS, Dissanayake DKRPL, Atapattu AJ. 2022. Coconut based multiple cropping systems: An analytical review in Sri Lankan coconut cultivations. Circular Agricultural Systems 2:8

doi: 10.48130/CAS-2022-0008
[3]

Dissanayaka DMNS, Udumann SS, Dissanayake DKRPL, Nuwarapaksha TD, Atapattu AJ. 2023. Review on aquatic weeds as potential source for compost production to meet sustainable plant nutrient management needs. Waste 1(1):264−80

doi: 10.3390/waste1010017
[4]

Ekanayaka EMGN, Dissanayake DKRPL, Herath HMSK, Atapattu AJ. 2022. Effect of king coconut husk biochar on nitrogen retention in sandy and clay soils fertilized with urea and ammonium sulphate. Conference: Technological Transformation for Sustainable Development, 1st Annual Research Session, 2022, Sri Lanka. pp. 36. Sri Lanka: Faculty of Technology Eastern University, Sri Lanka.

[5]

Ding K, Le Y, Yao G, Ma Z, Jin B, et al. 2018. A rapid and efficient hydrothermal conversion of coconut husk into formic acid and acetic acid. Process Biochemistry 68:131−35

doi: 10.1016/j.procbio.2018.02.021
[6]

Nurdiana O, Sam ST, Faiq AM. 2018. Optimization of the product of nanocrystalline cellulose from coconut husks. IOP Conference Series: Materials Science and Engineering 429(1):012041

doi: 10.1088/1757-899X/429/1/012041
[7]

Godage RSW, Gajanayake B, Jayasinghe-Mudalige UK. 2021. Coconut growers' knowledge, perception and adoption on impacts of climate change in Gampaha and Puttalam districts in Sri Lanka: An index-based approach. Current Research in Agricultural Sciences 8(2):97−109

doi: 10.18488/journal.68.2021.82.97.109
[8]

Bolivar-Telleria M, Turbay C, Favarato L, Carneiro T, de Biasi RS, et al. 2018. Second-generation bioethanol from coconut husk. BioMed Research International 2018:4916497

doi: 10.1155/2018/4916497
[9]

Aggarwal VA. 2020. Resource congestion in alliance networks: How a firm's partners' partners influence the benefits of collaboration. Strategic Management Journal 41(4):627−55

doi: 10.1002/smj.3109
[10]

Asha'ari MA, Rahman EKA, Ratnayake U, Tan SJ, Shams S. 2021. Field evaluation of using coconut husk and fibre to control slope erosion. IOP Conference Series: Earth and Environmental Science 646:012044

doi: 10.1088/1755-1315/646/1/012044
[11]

Suman S, Gautam S. 2017. Pyrolysis of coconut husk biomass: Analysis of its biochar properties. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 39(8):761−67

doi: 10.1080/15567036.2016.1263252
[12]

Pan X, Gu Z, Chen W, Li Q. 2021. Preparation of biochar and biochar composites and their application in a Fenton-like process for wastewater decontamination: A review. Science of The Total Environment 754:142104

doi: 10.1016/j.scitotenv.2020.142104
[13]

Ullah Z, Ali S, Muhammad N, Khan N, Rizwan M, et al. 2020. Biochar impact on microbial population and elemental composition of red soil. Arabian Journal of Geosciences 13(16):757

doi: 10.1007/s12517-020-05671-6
[14]

Xiang Y, Deng Q, Duan H, Guo Y. 2017. Effects of biochar application on root traits: a meta-analysis. GCB Bioenergy 9(10):1563−72

doi: 10.1111/gcbb.12449
[15]

Schmidt HP, Kammann C, Hagemann N, Leifeld J, Bucheli TD, et al. 2021. Biochar in agriculture – A systematic review of 26 global meta-analyses. GCB Bioenergy 13(11):1708−30

doi: 10.1111/gcbb.12889
[16]

Dissanayake DKRPL, Udumann SS, Dissanayaka DMNS, Nuwarapaksha TD, Atapattu AJ. 2023. Effect of biochar application rate on macronutrient retention and leaching in two coconut growing soils. Technology in Agronomy 3:5

doi: 10.48130/TIA-2023-0005
[17]

Gao Y, Shao G, Lu J, Zhang K, Wu S, et al. 2020. Effects of biochar application on crop water use efficiency depend on experimental conditions: A meta-analysis. Field Crops Research 249:107763

doi: 10.1016/j.fcr.2020.107763
[18]

He Y, Yao Y, Ji Y, Deng J, Zhou G, et al. 2020. Biochar amendment boosts photosynthesis and biomass in C3 but not C4 plants: A global synthesis. GCB Bioenergy 12(8):605−17

doi: 10.1111/gcbb.12720
[19]

Omondi MO, Xia X, Nahayo A, Liu X, Korai PK, et al. 2016. Quantification of biochar effects on soil hydrological properties using meta-analysis of literature data. Geoderma 274:28−34

doi: 10.1016/j.geoderma.2016.03.029
[20]

Dissanayake DKRPL, Dissanayaka DMNS, Udumann SS, Nuwarapaksha TD, Atapattu AJ. 2023. Is biochar a promising soil amendment to enhance perennial crop yield and soil quality in the tropics? Technology in Agronomy 3:4

doi: 10.48130/TIA-2023-0004
[21]

Jing Y, Zhang Y, Han I, Wang P, Mei Q, et al. 2020. Effects of different straw biochars on soil organic Carbon, Nitrogen, available Phosphorus, and enzyme activity in paddy soil. Scientific Reports 10:8837

doi: 10.1038/s41598-020-65796-2
[22]

Tisserant A, Cherubini F. 2019. Potentials, limitations, co-benefits, and trade-offs of biochar applications to soils for climate change mitigation. Land 8(12):179

doi: 10.3390/land8120179
[23]

Jeffery S, Verheijen FGA, Kammann C, Abalos D. 2016. Biochar effects on methane emissions from soils: A meta-analysis. Soil Biology and Biochemistry 101:251−58

doi: 10.1016/j.soilbio.2016.07.021
[24]

Durak H. 2023. Comprehensive assessment of thermochemical processes for sustainable waste management and resource recovery. Processes 11(7):2092

doi: 10.3390/pr11072092
[25]

Xu S, Chen J, Peng H, Leng S, Li H, et al. 2021. Effect of biomass type and pyrolysis temperature on nitrogen in biochar, and the comparison with hydrochar. Fuel 291(2020):120128

doi: 10.1016/j.fuel.2021.120128
[26]

Sarfraz R, Hussain A, Sabir A, Ben Fekih I, Ditta A, et al. 2019. Role of biochar and plant growth promoting rhizobacteria to enhance soil carbon sequestration - A review. Environmental Monitoring and Assessment 191(4):251

doi: 10.1007/s10661-019-7400-9
[27]

Mohamed Noor N, Shariff A, Abdullah N, Mohamad Aziz NS. 2019. Temperature effect on biochar properties from slow pyrolysis of coconut flesh waste. Malaysian Journal of Fundamental and Applied Sciences 15(2):153−58

doi: 10.11113/mjfas.v15n2.1015
[28]

Venkatesh G, Gopinath KA, Reddy KS, Reddy BS, Prabhakar M, et al. 2022. Characterization of biochar derived from crop residues for soil amendment, carbon sequestration and energy use. Sustainability 14(4):2295

doi: 10.3390/su14042295
[29]

Dhar SA, Sakib TU, Hilary LN. 2022. Effects of pyrolysis temperature on production and physicochemical characterization of biochar derived from coconut fiber biomass through slow pyrolysis process. Biomass Conversion and Biorefinery 12(7):2631−47

doi: 10.1007/s13399-020-01116-y
[30]

Brassard P, Godbout S, Raghavan V, Palacios J, Grenier M, et ak. 2017. The production of engineered biochars in a vertical auger pyrolysis reactor for Carbon sequestration. Energies 10(3):288

doi: 10.3390/en10030288
[31]

Ma X, Zhou B, Budai A, Jeng A, Hao X, et al. 2016. Study of biochar properties by scanning electron microscope - energy dispersive X-ray spectroscopy (SEM-EDX). Communications in Soil Science and Plant Analysis 47(5):593−601

doi: 10.1080/00103624.2016.1146742
[32]

Sarkar JK, Wang Q. 2020. Different pyrolysis process conditions of South Asian waste coconut shell and characterization of gas, bio-char, and bio-oil. Energies 13(8):1970

doi: 10.3390/en13081970
[33]

Wu W, Yang M, Feng Q, McGrouther K, Wang H, et al. 2012. Chemical characterization of rice straw-derived biochar for soil amendment. Biomass and Bioenergy 47:268−76

doi: 10.1016/j.biombioe.2012.09.034
[34]

Pandey N. 2018. Role of Plant Nutrients in Plant Growth and Physiology. In Plant Nutrients and Abiotic Stress Tolerance, eds. Hasanuzzaman M, Fujita M, Oku H, Nahar K, Hawrylak-Nowak B. Singapore: Springer. pp. 51−93. https://doi.org/10.1007/978-981-10-9044-8_2

[35]

Xin Y, Wang D, Li XQ, Yuan Q, Cao H. 2018. Influence of moisture content on cattle manure char properties and its potential for hydrogen rich gas production. Journal of Analytical and Applied Pyrolysis 130:224−32

doi: 10.1016/j.jaap.2018.01.005
[36]

Marschner P. 2012. Marschner's Mineral Nutrition of Higher Plants. 3rd Edition. London, UK: Academic Press. https://doi.org/10.1016/C2009-0-63043-9.

[37]

Eduah JO, Nartey EK, Abekoe MK, Breuning-Madsen H, Andersen MN. 2019. Phosphorus retention and availability in three contrasting soils amended with rice husk and corn cob biochar at varying pyrolysis temperatures. Geoderma 341:10−17

doi: 10.1016/j.geoderma.2019.01.016
[38]

Tan Z, Liu L, Zhang L, Huang Q. 2017. Mechanistic study of the influence of pyrolysis conditions on potassium speciation in biochar "preparation-application" process. Science of The Total Environment 599–600:207−16

doi: 10.1016/j.scitotenv.2017.04.235
[39]

Chatterjee R, Sajjadi B, Chen WY, Mattern DL, Hammer N, et al. 2020. Effect of pyrolysis temperature on physicochemical properties and acoustic-based amination of biochar for efficient CO2 adsorption. Frontiers in Energy Research 8:85

doi: 10.3389/fenrg.2020.00085
[40]

Rafiq MK, Bachmann RT, Rafiq MT, Shang Z, Joseph S, et al. 2016. Influence of pyrolysis temperature on physico-chemical properties of corn stover (Zea mays L.) biochar and feasibility for carbon capture and energy balance. PLoS ONE 11(6):e0156894

doi: 10.1371/journal.pone.0156894
[41]

Zhao B, Xu H, Zhang T, Nan X, Ma F. 2018. Effect of pyrolysis temperature on sulfur content, extractable fraction and release of sulfate in corn straw biochar. RSC Advances 8(62):35611−17

doi: 10.1039/C8RA06382F
[42]

Uchimiya M, Chang S, Klasson KT. 2011. Screening biochars for heavy metal retention in soil: Role of Oxygen functional groups. Journal of Hazardous Materials 190(1-3):432−41

doi: 10.1016/j.jhazmat.2011.03.063
[43]

Zhang Q, Ye X, Li H, Chen D, Xiao W, et al. 2020. Cumulative effects of pyrolysis temperature and process on properties, chemical speciation, and environmental risks of heavy metals in magnetic biochar derived from coagulation-flocculation sludge of swine wastewater. Journal of Environmental Chemical Engineering 8(6):104472

doi: 10.1016/j.jece.2020.104472
[44]

Ma JF. 2004. Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Science and Plant Nutrition 50(1):11−18

doi: 10.1080/00380768.2004.10408447
[45]

Qian L, Chen B. 2013. Dual role of biochars as adsorbents for aluminum: The effects of oxygen-containing organic components and the scattering of Silicate particles. Environmental Science & Technology 47(15):8759−68

doi: 10.1021/es401756h
[46]

Wang Y, Xiao X, Xu Y, Chen B. 2019. Environmental effects of Silicon within biochar (sichar) and Carbon–Silicon coupling mechanisms: A critical review. Environmental Science & Technology 53(23):13570−82

doi: 10.1021/acs.est.9b03607
[47]

Tag AT, Duman G, Ucar S, Yanik J. 2016. Effects of feedstock type and pyrolysis temperature on potential applications of biochar. Journal of Analytical and Applied Pyrolysis 120:200−6

doi: 10.1016/j.jaap.2016.05.006
[48]

Le PT, Bui HT, Le DN, Nguyen TH, Pham LA, et al. 2021. Preparation and characterization of biochar derived from agricultural by-products for dye removal. Adsorption Science & Technology 2021:1−14

doi: 10.1155/2021/9161904
[49]

Binh QA, Kajitvichyanukul P. 2019. Adsorption mechanism of dichlorvos onto coconut fibre biochar: The significant dependence of H-bonding and the pore-filling mechanism. Water Science and Technology 75(5):866−76

doi: 10.2166/wst.2018.529