[1] |
Feng Y. 2018. Preliminary study on the mechanism of hypoglycemic effect of the main active ingredients of small-leaf Kuding tea. Thesis. Shenzhen University, Shenzhen, China. |
[2] |
Zheng WJ. 2016. Application of integrated production and processing technology of small-leaf kuding tea in Guizhou. Thesis. Guizhou Tea Research Institute, China. pp. 20−21. |
[3] |
Wang JH, Qi X, Yao SL. 2010. Investigation of raw material plants of Guizhou hawk tea. Southwest China Journal of Agricultural Sciences 23(3):983−85 doi: 10.16213/j.cnki.scjas.2010.03.039 |
[4] |
Lei M, Xu YS, Xu FL, Long L, Gong Q, et al. 2017. Research progress on the chemical composition and pharmacological effects of Polysyllium. Pharmacology and Clinics of Chinese Materia Medica 33(6):176−80 doi: 10.13412/j.cnki.zyyl.2017.06.049 |
[5] |
Dai QL, Zhu HX, Lu M, Huang F, Chen B, et al. 2022. Investigation and evaluation of Litsea coreana germplasm resources in Chongqing. Acta Agriculturae Zhejiangensis 34(3):447−56 doi: 10.3969/j.issn.1004-1524.2022.03.04 |
[6] |
Yuan CJ, Liu N, Xie T, Huang AX, Wu YH, Ding FJ. 2021. Research progress on the active components and influencing factors of Cyclocarya paliurus leaves. Guizhou Forestry Science and Technology 49(3):48−53+64 doi: 10.16709/j.cnki.gzlykj.2021.03.010 |
[7] |
Lu ZY, Zhang MQ, Chen X. 2023. Optimization of ultrasound-assisted extraction of Ilex latifolia Thunb. polysaccharide and its effect on the inhibitory activity of xanthine oxidase. Science and Technology of Food Industry 44(8):228−35(in Chinese) doi: 10.13386/j.issn1002-0306.2022070019 |
[8] |
Zou CM, Li L, Shi SS, Hu T. 2022. Fractionation, identification and biological activities of ethanol extract of Kuding tea (Ilex latifolia Thunb.). Food Science 43(20):18−24 doi: 10.7506/spkx1002-6630-20210809-114 |
[9] |
Ren H, Li X, Xing ZT, Ke YC, Bai DJ, et al. 2012. Preparation of a compound teabag with Ilex kudingcha, Lithocarous polystachyus Rehd and Green tea. Food Industry 33(9):78−79 |
[10] |
Zou RC, Wu SJ, Jiao SQ, Yu ZW. 2018. Research progress on content variation of main functional compound in Cyclocarya paliurus. Liaoning Journal of Traditional Chinese Medicine 45(8):1782−85 doi: 10.13192/j.issn.1000-1719.2018.08.071 |
[11] |
Zhang LH. 2019. The study for the hypoglycemic mechanism on type 2 diabetes mellitus model rats and chemical constituents of Cyclocarya paloueus (Batal) ijinskaja from Guizhou province. Thesis. Guangdong Pharmaceutical University, Guangdong, China. |
[12] |
Lei M. 2018. The proliferation effect of the water extraction of Lithocarpus polystachyrus Rehd on normal human liver cells L-02. Thesis. Zunyi Medical College, Zunyi, China. |
[13] |
Yang TY, Yang CD. 2020. Study on nutritional components and bioactivity of small-leaf kudingcha from Yuqing. Food Industry 41(8):323−27 |
[14] |
Zhang L. 2018. Processing methods of Hawk tea and evaluation of anti-inflammatory effect on ulcerative colitis in mice. Thesis. Southwest University, Chongqing, China. |
[15] |
Wang YX, Deng YL, Yao SL, Wang Y, Wang JH. 2021. Comparison of quality of Hawk tea (Litsea coreana var. sinensis) in four counties of Guizhou province. Agriculture Zhejiangensis 33(1):142−49 doi: 10.3969/j.issn.1004-1524.2021.01.17 |
[16] |
Kou XL. 2019. Analysis of main characteristic flavor components of Cyclocarya paliurus tea. Thesis. Nanjing Forestry University, Nanjing, China. https://doi.org/10.27242/d.cnki.gnjlu.2019.000358 |
[17] |
Teng T, Zhao YC, Zhao DG. 2021. Analysis of components of Lithocarpus polystachyus in different fixation methods. Chemistry of Life 41(6):1181−88 doi: 10.13488/j.smhx.20210163 |
[18] |
Ye F, Qiao X, Gui A, Wang S, Liu L, et al. 2021. Metabolomics provides a novel interpretation of the changes in main compounds during Black tea processing through different drying methods. Molecules 26(21):6739 doi: 10.3390/molecules26216739 |
[19] |
Wang J, Li X, Wu Y, Qu F, et al. 2022. HS-SPME/GC-MS Reveals the Season Effects on Volatile Compounds of Green Tea in High-Latitude Region. Foods (Basel, Switzerland) 11(19):3016 doi: 10.3390/foods11193016 |
[20] |
Yang XH, Lu BY, Huang MG, Siqin MKT, Mao QL, et al. 2016. Study on DPPH free radical scavenging capacity and polyphenols and flavonoids contents of Qingzhuan brick tea. Food Research and Development 37(23):1−5 doi: 10.3969/j.issn.1005-6521.2016.23.001 |
[21] |
Tang TF, Deng QD, Li XH, Tian YH. 2018. Study on extraction of total flavonoids from leaves of Ilex pubescens and its antioxidant. Food Research and Development 39(21):77−82 doi: 10.3969/j.issn.1005-6521.2018.21.013 |
[22] |
Yang M. 2018. Studies on the relationship between antioxidant activity of Ligustrum robustum. Thesis. Guizhou Normal University, Guizhou, China. |
[23] |
Yang W. 2022. Synergistic effect of Selenium and total flavonoids of Hawk tea on lipid oxidation and anticancer activity. Thesis. Hubei University for Nationalities, Hubei, China. |
[24] |
Wu L, Zhou WB, Xie NN, Xu N, You LF. 2021. Studies on fermentation technology of Hawk tea and its antioxidant activity. Science and Technology of Food Industry 42(11):168−73 doi: 10.13386/j.issn1002-0306.2020080052 |
[25] |
Liu XG. 2012. Extraction purification antioxidant activity and application of flavonoids from Cyclocarya paliurus. Thesis. Guangxi University, Guangxi, China. |
[26] |
Yang XH, Lv BY, Huang MJ, Siqin CKT, Mao QL, et al. 2020. Studies on DPPH free radical scavenging capacity and polyphenols and flavonoids contents of Qingzhuan Brick tea. Food Research and Development 37(23):1−5 doi: 10.3969/j.issn.1005-6521.2016.23.001 |
[27] |
Deng X, Shang H, Chen J, Wu J, Wang T, et al. 2022. Metabolomics combined with proteomics provide a novel interpretation of the changes in flavonoid glycosides during white tea processing. Foods 11(9):1226 doi: 10.3390/foods11091226 |
[28] |
Gómez-González S, Ruiz-Jiménez J, Priego-Capote F, Luque de Castro MD, et al. 2010. Qualitative and quantitative sugar profiling in olive fruits, leaves, and stems by Gas Chromatography-Tandem Mass Spectrometry (GC-MS/MS) after ultrasound-assisted leaching. Journal of Agricultural and Food Chemistry 58(23):12292−99 doi: 10.1021/jf102350s |
[29] |
Medeiros PM, Simoneit BRT. 2007. Analysis of sugars in environmental samples by gas chromatography-mass spectrometry. Journal of Chromatography A 1141(2):271−78 doi: 10.1016/j.chroma.2006.12.017 |
[30] |
Zheng H, Zhang Q, Quan J, Zheng Q, Xi W. 2016. Determination of sugars, organic acids, aroma components, and carotenoids in grapefruit pulps. Food Chemistry 205:112−21 doi: 10.1016/j.foodchem.2016.03.007 |
[31] |
Sun S, Wang H, Xie J, Su Y. 2016. Simultaneous determination of rhamnose, xylitol, arabitol, fructose, glucose, inositol, sucrose, maltose in jujube (Zizyphus jujube Mill.) extract:comparison of HPLC-ELSD, LC-ESI-MS/MS and GC-MS. Chemistry Central Journal 10:25 doi: 10.1186/s13065-016-0171-2 |
[32] |
Wang JY. 2021. Comparison of in vitro antioxidant activities and tasting specifications of commonly used leaf substitute teas. Thesis. Zhejiang University, Zhejiang, China. https://doi.org/10.27461/d.cnki.gzjdx.2021.001957 |
[33] |
Liu LW, Ren J, Hou JC, Li YN, Liu ZH, et al. 2022. Structural characteristics, physicochemical properties and antioxidant activity of oyster polysaccharides. Food and Fermentation Industry 49(6):57−63 doi: 10.13995/j.cnki.11-1802/ts.031936 |
[34] |
Bao YH, Yan SF, Xiao M, Cui M. 2022. Effect of germination on the active components and antioxidant activity of fermented beverage from highland barley. Journal of Food Safety and Quality 13(13):4383−89 doi: 10.19812/j.cnki.jfsq11-5956/ts.2022.13.032 |
[35] |
Chen W, Gong L, Guo ZL, Wang W, Zhang H, et al. 2013. A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites: application in the study of rice metabolomics. Molecular Plant 6(6):1769−80 doi: 10.1093/mp/sst080 |
[36] |
Fraga CG, Clowers BH, Moore RJ, Zink EM. 2010. Signature-discovery approach for sample matching of a nerve-agent precursor using liquid chromatography-mass spectrometry, XCMS, and chemometrics. Analytical Chemistry 82(10):4165−73 doi: 10.1021/ac1003568 |
[37] |
Zhou Y, Shao L, Zhu J, Li H, Duan H. 2021. Comparative analysis of tuberous root metabolites between cultivated and wild varieties of rehmannia glutinosa by widely targeted metabolomics. Scientific Reports 11:11460 doi: 10.1038/S41598-021-90961-6 |
[38] |
Liu ZY, Ran QS, Li Q, Yang T, Dai YQ, et a. 2023. Interaction between major catechins and umami amino acids in green tea based on electronic tongue technology. Journal of Food Science 88(6):2339−52 doi: 10.1111/1750-3841.16543 |
[39] |
Wu CQ, Zhang WH, Luo HH, Liu SP. 2022. Research progress on chemical composition, pharmacological effects and applications of Cyanococcus aurantium. Shandong Chemical Industry 51(11):65−67 doi: 10.19319/j.cnki.issn.1008-021x.2022.11.019 |
[40] |
Mao CL, Huang HL, Dong GT, Wang LL, Luo XY, et al. 2021. Study on relation between antioxidant activity of extracts from Cyclocarya paliurus leaves and total flavonoid content. Journal Zhejiang Forestry Science and Technology 41(3):32−38 |
[41] |
Nie XH, Wu CC, Lin SL, Zheng XJ. 2022. Advance on active compounds and functional properties of Cyclocarya paliurus (Batal.) iljinskaja. Journal of Zhejiang University of Technology 50(2):222−27 |
[42] |
Xia H. 2016. Research on basis material of antioxidant activities in Hawk tea. Thesis. Huazhong Agricultural University, Wuhan, China. |
[43] |
Xie JH. 2014. Modification of polysaccharides from Cyclocarya paliurus and their biological activities. Thesis. Nanchang University, Jiangxi, China. |
[44] |
Ge X, Chen TT, Cai JY, Huang MQ, Xu WF, et al. 2011. Studies on the anti-oxidant activity of polysaccharide from Cyclocarya paliurus (Batal.) iljinsk. Chinese Journal of Food Science 11(5):59−64 doi: 10.3969/j.issn.1009-7848.2011.05.010 |
[45] |
Tan LH, Zhang D, Wang G, Yu B, Zhao SP, et al. 2016. Comparative analyses of flavonoids compositions and antioxidant activities of Hawk tea from six botanical origins. Industrial Crops and Products 80:123−30 doi: 10.1016/j.indcrop.2015.11.035 |
[46] |
Liu ZY, Yang T, Dai YQ, Fang SM, Liu YB, et al. 2021. Research progress of tea taste based on molecular sensory science. Food Industry Science and Technology 42(4):337−343+355 doi: 10.13386/j.issn1002-0306.2020040319 |
[47] |
Scharbert S, Hofmann T. 2005. Molecular definition of Black tea taste by means of quantitative studies, taste reconstitution, and omission experiments. Journal of Agricultural & Food Chemistry 53:5377−84 doi: 10.1021/jf050294d |
[48] |
Xu YQ, Zhang YN, Chen JX, Wang F, Du QZ, et al. 2018. Quantitative analyses of the bitterness and astringency of catechins from green tea. Food Chemistry 258:16−24 doi: 10.1016/j.foodchem.2018.03.042 |
[49] |
Li MJ. 20118. Chemical constituents and bioactivitives of ilex kudingcha. Thesis. Jilin University, Jilin, China. |
[50] |
Liu ZX, Wu YC, Zhang KX, Zhang ZY, Fu HH, et al. 2022. Research progress on extraction technology and pharmacological activities of total flavonoids from Ilex kudingcha C.J.tsing. Shandong Chemical Industry 51(15):92−94 doi: 10.19319/j.cnki.issn.1008-021x.2022.15.019 |
[51] |
Huang FP, Chen W, Chen RB, Liang YR. 2002. Changes in sugar content of oolong tea during the greening process. Chinese Tea 24(6):13−15 doi: 10.3969/j.issn.1000-3150.2002.06.005 |
[52] |
Jiang XH, Jiang TZ, Wang X, Yuan J. 2018. Monosaccharide constituents of the polysaccharides from the leaf of Cyclocarya paliurus. Journal of Guangxi Normal University (Natural Science Edition) 36(2):87−93 doi: 10.16088/j.issn.1001-6600.2018.02.012 |