[1]

Xu W, Jia L, Shi W, Balu¡ka F, Kronzucker HJ, et al. 2013. The Tomato 14-3-3 protein TFT4 modulates H+ efflux, basipetal auxin transport, and the PKS5-J3 pathway in the root growth response to alkaline stress. Plant Physiology 163:1817−28

doi: 10.1104/pp.113.224758
[2]

Xu W, Jia L, Baluska F, Ding G, Shi W, et al. 2012. PIN2 is required for the adaptation of Arabidopsis roots to alkaline stress by modulating proton secretion. Journal of Experimental Botany 63:6105−14

doi: 10.1093/jxb/ers259
[3]

Yang C, Wang P, Li C, Shi D, Wang D, et al. 2008. Comparison of effects of salt and alkali stresses on the growth and photosynthesis of wheat. Photosynthetica 46:107−14

doi: 10.1007/s11099-008-0018-8
[4]

Wu J, Cao J, Su M, Feng G, Xu Y, et al. 2019. Genome-wide comprehensive analysis of transcriptomes and small RNAs offers insights into the molecular mechanism of alkaline stress tolerance in a citrus rootstock. Horticulture Research 6:33

doi: 10.1038/s41438-018-0116-0
[5]

Den Herder G, Van Isterdael G, Beeckman T, De Smet I. 2010. The roots of a new green revolution. Trends in Plant Science 15:600−7

doi: 10.1016/j.tplants.2010.08.009
[6]

Lavenus J, Goh T, Roberts I, Guyomarc'h S, Lucas M, et al. 2013. Lateral root development in Arabidopsis: fifty shades of auxin. Trends in Plant Science 18:450−58

doi: 10.1016/j.tplants.2013.04.006
[7]

Gifford ML, Dean A, Gutierrez RA, Coruzzi GM, Birnbaum K. 2008. Cell-specific nitrogen responses mediate developmental plasticity. Proceedings of the National Academy of Sciences of the United States of America 105:803−8

doi: 10.1073/pnas.0709559105
[8]

Pérez-Torres CA, López-Bucio J, Cruz-Ramírez A, Ibarra-Laclette E, Dharmasiri S, et al. 2008. Phosphate availability alters lateral root development in Arabidopsis by modulating auxin sensitivity via a mechanism involving the TIR1 auxin receptor. The Plant Cell 20:3258−72

doi: 10.1105/tpc.108.058719
[9]

Shin R, Burch AY, Huppert KA, Tiwari SB, Murphy AS, et al. 2007. The Arabidopsis transcription factor MYB77 modulates auxin signal transduction. The Plant Cell 19:2440−53

doi: 10.1105/tpc.107.050963
[10]

Fukaki H, Tameda S, Masuda H, Tasaka M. 2002. Lateral root formation is blocked by a gain-of-function mutation in the SOLITARY-ROOT/IAA14 gene of Arabidopsis. The Plant Journal 29:153−68

doi: 10.1046/j.0960-7412.2001.01201.x
[11]

Xuan W, Audenaert D, Parizot B, Möller BK, Njo MF, et al. 2015. Root cap-derived auxin pre-patterns the longitudinal axis of the Arabidopsis root. Current Biology 25:1381−88

doi: 10.1016/j.cub.2015.03.046
[12]

Shkolnik-Inbar D, Bar-Zvi D. 2010. ABI4 mediates abscisic acid and cytokinin inhibition of lateral root formation by reducing polar auxin transport in Arabidopsis. The Plant Cell 22:3560−73

doi: 10.1105/tpc.110.074641
[13]

Creelman RA, Mullet JE. 1995. Jasmonic acid distribution and action in plants: regulation during development and response to biotic and abiotic stress. Proceedings of the National Academy of Sciences of the United States of America 92:4114−19

doi: 10.1073/pnas.92.10.4114
[14]

Ismail A, Riemann M, Nick P. 2012. The jasmonate pathway mediates salt tolerance in grapevines. Journal of Experimental Botany 63:2127−39

doi: 10.1093/jxb/err426
[15]

Javid MG, Sorooshzadeh A, Moradi F, Ali Mohammad Modarres Sanavy S, Allahdadi I. 2011. The role of phytohormones in alleviating salt stress in crop plants. Australian Journal of Crop Science 5:726−34

[16]

Kang DJ, Seo YJ, Lee JD, Ishii R, Kim KU, et al. 2005. Jasmonic acid differentially affects growth, ion uptake and abscisic acid concentration in salt-tolerant and salt-sensitive rice cultivars. Journal of Agronomy and Crop Science 191:273−82

doi: 10.1111/j.1439-037X.2005.00153.x
[17]

Pedranzani H, Racagni G, Alemano S, Miersch O, Ramírez I, et al. 2003. Salt tolerant tomato plants show increased levels of jasmonic acid. Plant Growth Regulation 41:149−58

doi: 10.1023/A:1027311319940
[18]

Qiu Z, Guo J, Zhu A, Zhang L, Zhang M. 2014. Exogenous jasmonic acid can enhance tolerance of wheat seedlings to salt stress. Ecotoxicology and Environmental Safety 104:202−8

doi: 10.1016/j.ecoenv.2014.03.014
[19]

Wu H, Ye H, Yao R, Zhang T, Xiong L. 2015. OsJAZ9 acts as a transcriptional regulator in jasmonate signaling and modulates salt stress tolerance in rice. Plant Science 232:1−12

doi: 10.1016/j.plantsci.2014.12.010
[20]

Yoon JY, Hamayun M, Lee SK, Lee IJ. 2009. Methyl jasmonate alleviated salinity stress in soybean. Journal of Crop Science and Biotechnology 12:63−68

doi: 10.1007/s12892-009-0060-5
[21]

Zhu D, Li R, Liu X, Sun M, Wu J, et al. 2014. The positive regulatory roles of the TIFY10 proteins in plant responses to alkaline stress. PLoS ONE 9:e111984

doi: 10.1371/journal.pone.0111984
[22]

Zhu D, Cai H, Luo X, Bai X, Deyholos MK, et al. 2012. Over-expression of a novel JAZ family gene from Glycine soja, increases salt and alkali stress tolerance. Biochemical and Biophysical Research Communications 426:273−79

doi: 10.1016/j.bbrc.2012.08.086
[23]

Chen Q, Sun J, Zhai Q, Zhou W, Qi L, et al. 2011. The basic helix-loop-helix transcription factor MYC2 directly represses PLETHORA expression during jasmonate-mediated modulation of the root stem cell niche in Arabidopsis. The Plant Cell 23:3335−52

doi: 10.1105/tpc.111.089870
[24]

Raya-González J, Pelagio-Flores R, López-Bucio J. 2012. The jasmonate receptor COI1 plays a role in jasmonate-induced lateral root formation and lateral root positioning in Arabidopsis thaliana. Journal of Plant Physiology 169:1348−58

doi: 10.1016/j.jplph.2012.05.002
[25]

Sun J, Chen Q, Qi L, Jiang H, Li S, et al. 2011. Jasmonate modulates endocytosis and plasma membrane accumulation of the Arabidopsis PIN2 protein. New Phytologist 191:360−75

doi: 10.1111/j.1469-8137.2011.03713.x
[26]

Denness L, McKenna JF, Segonzac C, Wormit A, Madhou P, et al. 2011. Cell wall damage-induced lignin biosynthesis is regulated by a reactive oxygen species- and jasmonic acid-dependent process in Arabidopsis. Plant Physiology 156:1364−74

doi: 10.1104/pp.111.175737
[27]

Pauwels L, Morreel K, De Witte E, Lammertyn F, Van Montagu M, et al. 2008. Mapping methyl jasmonate-mediated transcriptional reprogramming of metabolism and cell cycle progression in cultured Arabidopsis cells. Proceedings of the National Academy of Sciences of the United States of America 105:1380−85

doi: 10.1073/pnas.0711203105
[28]

Fuglsang AT, Guo Y, Cuin TA, Qiu Q, Song C, et al. 2007. Arabidopsis protein kinase PKS5 inhibits the plasma membrane H+-ATPase by preventing interaction with 14-3-3 protein. The Plant Cell 19:1617−34

doi: 10.1105/tpc.105.035626
[29]

Yang Y, Qin Y, Xie C, Zhao F, Zhao J, et al. 2010. The Arabidopsis chaperone j3 regulates the plasma membrane H+-ATPase through interaction with the PKS5 Kinase. The Plant Cell 22:1313−32

doi: 10.1105/tpc.109.069609
[30]

Palmgren MG. 2001. Plant plasma membrane H+-ATPases: powerhouses for nutrient uptake. Annual Review of Plant Physiology and Plant Molecular Biology 52:817−45

doi: 10.1146/annurev.arplant.52.1.817
[31]

Gueta-Dahan Y, Yaniv Z, Zilinskas BA, Ben-Hayyim G. 1997. Salt and oxidative stress: similar and specific responses and their relation to salt tolerance in Citrus. Planta 203:460−69

doi: 10.1007/s004250050215
[32]

Koca H, Ozdemir F, Turkan I. 2006. Effect of salt stress on lipid peroxidation and superoxide dismutase and peroxidase activities of Lycopersicon esculentum and L. pennellii. Biologia Plantarum 50:745−48

doi: 10.1007/s10535-006-0121-2
[33]

Mittova V, Tal M, Volokita M, Guy M. 2003. Up-regulation of the leaf mitochondrial and peroxisomal antioxidative systems in response to salt-induced oxidative stress in the wild salt-tolerant tomato species Lycopersicon pennellii. Plant, Cell & Environment 26:845−56

doi: 10.1046/j.1365-3040.2003.01016.x
[34]

Demiral T, Türkan I. 2004. Does exogenous glycinebetaine affect antioxidative system of rice seedlings under NaCl treatment? Journal of Plant Physiology 161:1089−100

doi: 10.1016/j.jplph.2004.03.009
[35]

Demiral T, Türkan İ. 2005. Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environmental and Experimental Botany 53:247−57

doi: 10.1016/j.envexpbot.2004.03.017
[36]

Gossett DR, Millhollon EP, Lucas MC. 1994. Antioxidant response to NaCl stress in salt-tolerant and salt-sensitive cultivars of cotton. Crop Science 34:706−14

doi: 10.2135/cropsci1994.0011183x003400030020x
[37]

Meneguzzo S, Navam-Izzo F, Izzo R. 1999. Antioxidative responses of shoots and roots of wheat to increasing NaCI concentrations. Journal of Plant Physiology 155:274−80

doi: 10.1016/S0176-1617(99)80019-4
[38]

Koca H, Bor M, Özdemir F, Türkan İ. 2007. The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environmental and Experimental Botany 60:344−51

doi: 10.1016/j.envexpbot.2006.12.005
[39]

Yazici I, Türkan I, Sekmen AH, Demiral T. 2007. Salinity tolerance of purslane (Portulaca oleracea L.) is achieved by enhanced antioxidative system, lower level of lipid peroxidation and proline accumulation. Environmental and Experimental Botany 61:49−57

doi: 10.1016/j.envexpbot.2007.02.010
[40]

Chen J, Jiang H, Hsieh E, Chen H, Chien C, et al. 2012. Drought and salt stress tolerance of an Arabidopsis glutathione S-transferase U17 knockout mutant are attributed to the combined effect of glutathione and abscisic acid. Plant Physiology 158:340−51

doi: 10.1104/pp.111.181875
[41]

Cheng M, Ko K, Chang W, Kuo W, Chen G, et al. 2015. Increased glutathione contributes to stress tolerance and global translational changes in Arabidopsis. The Plant Journal 83:926−39

doi: 10.1111/tpj.12940
[42]

Castle WS. 1995. Rootstock as a fruit quality factor in citrus and deciduous tree crops. New Zealand Journal of Crop and Horticultural Science 23:383−94

doi: 10.1080/01140671.1995.9513914
[43]

Storey R, Treeby MT. 2000. Seasonal changes in nutrient concentrations of navel orange fruit. Scientia Horticulturae 84:67−82

doi: 10.1016/S0304-4238(99)00093-X
[44]

Zhou G, Liu Y, Sheng O, Wei Q, Yang C, et al. 2015. Transcription profiles of boron-deficiency-responsive genes in citrus rootstock root by suppression subtractive hybridization and cDNA microarray. Frontiers in Plant Science 5:795

doi: 10.3389/fpls.2014.00795
[45]

Bao S. 2005. Analysis of soil agrochemical (Third edition). Beijing: China Agriculture Press. pp. 25−109.

[46]

Pan X, Welti R, Wang X. 2010. Quantitative analysis of major plant hormones in crude plant extracts by high-performance liquid chromatography–mass spectrometry. Nature Protocols 5:986−92

doi: 10.1038/nprot.2010.37
[47]

Wu J, Xu Z, Zhang Y, Chai L, Yi H, et al. 2014. An integrative analysis of the transcriptome and proteome of the pulp of a spontaneous late-ripening sweet orange mutant and its wild type improves our understanding of fruit ripening in citrus. Journal of Experimental Botany 65:1651−71

doi: 10.1093/jxb/eru044
[48]

Liu Y, Liu Q, Tao N, Deng X. 2006. Efficient isolation of RNA from fruit peel and pulp of ripening navel orange (Citrus sinensis Osbeck). Journal of Huazhong Agricultural University 25:300−4

doi: 10.13300/j.cnki.hnlkxb.2006.03.020
[49]

Langmead B, Trapnell C, Pop M, Salzberg SL. 2009. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology 10:R25

doi: 10.1186/gb-2009-10-3-r25
[50]

Kim D, Langmead B, Salzberg SL. 2015. HISAT: a fast spliced aligner with low memory requirements. Nature Methods 12:357−60

doi: 10.1038/nmeth.3317
[51]

Xu Q, Chen L, Ruan X, Chen D, Zhu A, et al. 2013. The draft genome of sweet orange (Citrus sinensis). Nature Genetics 45:59−66

doi: 10.1038/ng.2472
[52]

Li B, Dewey CN. 2011. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323

doi: 10.1186/1471-2105-12-323
[53]

Tarazona S, Furió-Tarí P, Turrà D, Pietro AD, Nueda MJ, et al. 2015. Data quality aware analysis of differential expression in RNA-seq with NOISeq R/Bioc package. Nucleic Acids Research 43:e140

doi: 10.1093/nar/gkv711
[54]

Tarazona S, García F, Ferrer A, Dopazo J, Conesa A. 2012. NOIseq: a RNA-seq differential expression method robust for sequencing depth biases. EMBnet Journal 17:18−19

doi: 10.14806/ej.17.B.265
[55]

Xie C, Mao X, Huang J, Ding Y, Wu J, et al. 2011. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Research 39:W316−W322

doi: 10.1093/nar/gkr483
[56]

Supek F, Bošnjak M, Škunca N, Šmuc T. 2011. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS ONE 6:e21800

doi: 10.1371/journal.pone.0021800
[57]

Wu J, Su S, Fu L, Zhang Y, Chai L, et al. 2014. Selection of reliable reference genes for gene expression studies using quantitative real-time PCR in navel orange fruit development and pummelo floral organs. Scientia Horticulturae 176:180−88

doi: 10.1016/j.scienta.2014.06.040
[58]

Geng J, Liu J. 2018. The transcription factor CsbHLH18 of sweet orange functions in modulation of cold tolerance and homeostasis of reactive oxygen species by regulating the antioxidant gene. Journal of Experimental Botany 69:2677−92

doi: 10.1093/jxb/ery065
[59]

Wang J, Sun P, Chen C, Wang Y, Fu X, et al. 2011. An arginine decarboxylase gene PtADC from Poncirus trifoliata confers abiotic stress tolerance and promotes primary root growth in Arabidopsis. Journal of Experimental Botany 62:2899−914

doi: 10.1093/jxb/erq463
[60]

Wang M, Dai W, Du J, Ming R, Dahro B, et al. 2018. ERF109 of trifoliate orange (Poncirus trifoliata (L.) Raf.) contributes to cold tolerance by directly regulating expression of Prx1 involved in antioxidative process. Plant Biotechnology Journal 17:1316−32

doi: 10.1111/pbi.13056
[61]

Dence CW. 1992. The Determination of Lignin. In Methods in Lignin Chemistry. Springer Series in Wood Science, eds. Lin SY, Dence CW. Berlin, Heidelberg: Springer. pp. 33−61. https://doi.org/10.1007/978-3-642-74065-7_3

[62]

Gutierrez L, Mongelard G, Floková K, Păcurar DI, Novák O, et al. 2012. Auxin controls Arabidopsis adventitious root initiation by regulating jasmonic acid homeostasis. The Plant Cell 24:2515−27

doi: 10.1105/tpc.112.099119
[63]

Staswick PE, Serban B, Rowe M, Tiryaki I, Maldonado MT, et al. 2005. Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. The Plant Cell 17:616−27

doi: 10.1105/tpc.104.026690
[64]

Liu J, Chen K, Hu Q, Yang M, Zhou Q, et al. 2008. Preliminary study on 'Ziyang xiangcheng' (Citrus junos Sieb. ex Tanaka), a special local citrus germplasm. Southwest China Journal of Agricultural Sciences 21:1658−60

[65]

Tan F, Tu H, Liang W, Long J, Wu X, et al. 2015. Comparative metabolic and transcriptional analysis of a doubled diploid and its diploid citrus rootstock (C. junos cv. Ziyang xiangcheng) suggests its potential value for stress resistance improvement. BMC Plant Biology 15:89

doi: 10.1186/s12870-015-0450-4
[66]

Gill SS, Tuteja N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry 48:909−30

doi: 10.1016/j.plaphy.2010.08.016
[67]

Anjum SA, Wang L, Farooq M, Khan I, Xue L. 2011. Methyl jasmonate-induced alteration in lipid peroxidation, antioxidative defence system and yield in soybean under drought. Journal of Agronomy and Crop Science 197:296−301

doi: 10.1111/j.1439-037X.2011.00468.x
[68]

Noriega G, Cruz DS, Batlle A, Tomaro M, Balestrasse K. 2012. Heme oxygenase is involved in the protection exerted by jasmonic acid against cadmium stress in soybean roots. Journal of Plant Growth Regulation 31:79−89

doi: 10.1007/s00344-011-9221-0
[69]

Piotrowska A, Bajguz A, Godlewska-Żyłkiewicz B, Czerpak R, Kamińska M. 2009. Jasmonic acid as modulator of lead toxicity in aquatic plant Wolffia arrhiza (Lemnaceae). Environmental and Experimental Botany 66:507−13

doi: 10.1016/j.envexpbot.2009.03.019
[70]

Shan C, Liang Z. 2010. Jasmonic acid regulates ascorbate and glutathione metabolism in Agropyron cristatum leaves under water stress. Plant Science 178:130−39

doi: 10.1016/j.plantsci.2009.11.002
[71]

Mason MG, Mathews DE, Argyros DA, Maxwell BB, Kieber JJ, et al. 2005. Multiple type-B response regulators mediate cytokinin signal transduction in Arabidopsis. The Plant Cell 17:3007−18

doi: 10.1105/TPC.105.035451
[72]

Riefler M, Novak O, Strnad M, Schmülling T. 2006. Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. The Plant Cell 18:40−54

doi: 10.1105/tpc.105.037796
[73]

Laplaze L, Benkova E, Casimiro I, Maes L, Vanneste S, et al. 2007. Cytokinins act directly on lateral root founder cells to inhibit root initiation. The Plant Cell 19:3889−900

doi: 10.1105/tpc.107.055863
[74]

Moriwaki T, Miyazawa Y, Kobayashi A, Uchida M, Watanabe C, et al. 2011. Hormonal regulation of lateral root development in Arabidopsis modulated by MIZ1 and requirement of GNOM activity for MIZ1 function. Plant Physiology 157:1209−20

doi: 10.1104/pp.111.186270