[1]

Naahidi S, Jafari M, Logan M, Wang Y, Yuan Y, et al. 2017. Biocompatibility of hydrogel-based scaffolds for tissue engineering applications. Biotechnology Advances 35(5):530−44

doi: 10.1016/j.biotechadv.2017.05.006
[2]

Liang Y, Zhao X, Ma PX, Guo B, Du Y, et al. 2018. pH-responsive injectable hydrogels with mucosal adhesiveness based on chitosan-grafted-dihydrocaffeic acid and oxidized pullulan for localized drug delivery. Journal of Colloid and Interface Science 536:224−34

doi: 10.1016/j.jcis.2018.10.056
[3]

Poverenov E, Zaitsev Y, Arnon H, Granit R, Alkalai-Tuvia S, et al. 2014. Effects of a composite chitosan-gelatin edible coating on postharvest quality and storability of red bell peppers. Postharvest Biology and Technology 96:106−09

doi: 10.1016/j.postharvbio.2014.05.015
[4]

Bai H, Li Z, Zhang S, Wang W, Dong W. 2018. Interpenetrating polymer networks in polyvinyl alcohol/cellulose nanocrystals hydrogels to develop absorbent materials. Carbohydrate Polymers 200:468−76

doi: 10.1016/j.carbpol.2018.08.041
[5]

Ge S, Liu Q, Li M, Liu J, Lu H, et al. 2018. Enhanced mechanical properties and gelling ability of gelatin hydrogels reinforced with chitin whiskers. Food Hydrocolloids 75:1−12

doi: 10.1016/j.foodhyd.2017.09.023
[6]

Fan L, Yi J, Tong J, Zhou X, Ge H, et al. 2016. Preparation and characterization of oxidized konjac glucomannan/carboxymethyl chitosan/graphene oxide hydrogel. International Journal of Biological Macromolecules 91:358−67

doi: 10.1016/j.ijbiomac.2016.05.042
[7]

Cao L, Chen C, Zhou Z, Dou S, Yun S, et al. 2022. Preparation of carboxymethyl chitosan/oxidized carboxymethyl cellulose/curcumin composite film and its application in strawberry film coating for preservation. Modern Food Technology 38(12):247−54

doi: 10.13982/j.mfst.1673-9078.2022.12.0101
[8]

Cai M, Xie Y, Zhou Y, Zhang S, Li Y, et al. 2022. Effect of konjac glucomannan on the properties of β-glucan complex gels. Food and Fermentation Industries 48(16):223−29

doi: 10.13995/j.cnki.11-1802/ts.028585
[9]

Han Q, Zhou T, Li Y, Li G, Song Z, et al. 2023. Effects on starch properties and application in functional foods of konjac glucomannan. Food Industry Technology 44:441−47

doi: 10.13386/j.issn1002-0306.2022050116
[10]

Jiang Y, Li G, Wang H, Li Q, Tang K. 2022. Multi-crosslinked hydrogels with instant self-healing and tissue adhesive properties for biomedical applications. Macromolecular Bioscience 22:e2100443

doi: 10.1002/mabi.202100443
[11]

Yan J. 2018. Preparation and evaluation of the properties of asparagus pollen polysaccharide/astragalus polysaccharide hydrogel. Thesis. Lanzhou University of Technology, China.

[12]

Shi P, Liu M, Fan F, Yu C, Lu W, et al. 2018. Characterization of natural hydroxyapatite originated from fish bone and its biocompatibility with osteoblasts. Materials Science & Engineering: C 90:706−12

doi: 10.1016/j.msec.2018.04.026
[13]

Fan M, Hu T, Zhao S, Xiong S, Xie J, et al. 2017. Gel characteristics and microstructure of fish myofibrillar protein/cassava starch composites. Food Chemistry 218:221−30

doi: 10.1016/j.foodchem.2016.09.068
[14]

Fan L, Yang H, Yang J, Peng M, Hu J. 2016. Preparation and characterization of chitosan/gelatin/PVA hydrogel for wound dressings. Carbohydrate Polymers 146:427−34

doi: 10.1016/j.carbpol.2016.03.002
[15]

Liu L, Wen H, Rao Z, Zhu C, Liu M, et al. 2018. Preparation and characterization of chitosan–collagen peptide/oxidized konjac glucomannan hydrogel. International Journal of Biological Macromolecules 108:376−82

doi: 10.1016/j.ijbiomac.2017.11.128
[16]

Jiang S. 2022. Strength and anisotropy regulation of konjac glucomannan/xanthan gum/sodium alginate composite gels. Thesis. Huazhong Agricultural University, China.

[17]

Bian S, Zheng Z, Liu Y, Ruan C, Pan H, et al. 2019. A shear-thinning adhesive hydrogel reinforced by photo-initiated crosslinking as a fit-to-shape tissue sealant. Journal of Materials Chemistry B 7:6488−99

doi: 10.1039/C9TB01521C
[18]

Huang C, Zhu D, Jiang T, Xu J. 2022. Preparation and properties of PVA/CMCS /OCD hydrogel for artificial blood vessels. Modern Chemical 42:152−159+165

doi: 10.16606/j.cnki.issn0253-4320.2022.S2.032
[19]

Wang B, Liu S, Fan l, Chen T, Sun H, et al. 2022. Preparation and properties of carboxybutyryl chitosan-silk peptide/oxidized konjac injectable hydrogel. Journal of Wuhan University (Science Edition) 68(6):589−92

doi: 10.14188/j.1671-8836.2021.0179
[20]

Sun Y, Luo A, Feng J, Lu J, Liu Q, et al. 2019. Preparation and properties of oxidized konjac glucomannan-chitosan composite films. Food and Fermentation Industry 45(5):170−76

doi: 10.13995/j.cnki.11-1802/ts.017679
[21]

Tian W, Qin X, Xie Y, Chen C, Long M, et al. 2022. Preparation and properties of oxidized konjac glucomannan-chitosan composite films. Food and Fermentation Industry 00:1−10

doi: 10.13995/j.cnki.11-1802/ts.033094
[22]

Kasahara H, Tanaka E, Fukuyama N, Sato E, Sakamoto H, et al. 2003. Biodegradable gelatin hydrogel potentiates the angiogenic effect of fibroblast growth factor 4 plasmid in rabbit hindlimb ischemia. Journal of the American College of Cardiology 41:1056−62

doi: 10.1016/S0735-1097(02)03007-3
[23]

Sun J, Jiang H, Wu H, Tong C, Pang J, et al. 2020. Multifunctional bionanocomposite films based on konjac glucomannan/chitosan with nano-ZnO and mulberry anthocyanin extract for active food packaging. Food Hydrocolloids 107:105942

doi: 10.1016/j.foodhyd.2020.105942
[24]

Wu H, Wu H, Qing Y, Wu C, Pang J. 2022. KGM/chitosan bio-nanocomposite films reinforced with ZNPs: Colloidal, physical, mechanical and structural attributes. Food Packaging and Shelf Life 33:100870

doi: 10.1016/j.fpsl.2022.100870
[25]

Liu J, Wang Z, Jiang X, Cao Y. 2018. Gelatin-chitosan-sodium alginate gel-embedded papain. Food Industry Technology 39:1−5

[26]

Luo M, Zhuo Y, Yang Y, Shan W. 2013. Preparation and performance study of a novel gel system for traumatic surfaces. China Journal of Pharmaceutical Industry 44:1232−35

[27]

Xiong Z. 2010. Characterization of gel texture of soybean isolate protein-anion polysaccharide composite system. Grain and Oil Processing 2010:133−36

[28]

Li G. 2021. Study of gelatin-based antibacterial adhesive composite hydrogels. Thesis. Zhengzhou University, China.

[29]

Nagarajan M, Benjakul S, Prodpran T, Songtipya P, Kishimura H. 2012. Characteristics and functional properties of gelatin from splendid squid (Loligo formosana) skin as affected by extraction temperatures. Food Hydrocolloids 29:389−97

doi: 10.1016/j.foodhyd.2012.04.001
[30]

Liu K. 2019. Development of chitosan hydrogel and its modification. Thesis. Wuhan University of Technology, China.

[31]

Wang M, Gu J, Hao Y, Qin X, Yu Y, et al. 2023. Adhesive, sustained-release, antibacterial, cytocompatible hydrogel-based nanofiber membrane assembled from polysaccharide hydrogels and functionalized nanofibers. Cellulose 30:323−37

doi: 10.1007/s10570-022-04894-y
[32]

Guo Y, Huang W, Mao X. 2022. Preparation and Release Properties of pH Responsive Carboxymethyl Agarose-Polydopamine Hydrogel. Food Science 43(10):59−65

doi: 10.7506/spkx1002-6630-20210723-277
[33]

Chen X, Pang J, Wu C. 2021. Fabrication and characterization of antimicrobial food packaging materials composed of konjac glucomannan, chitosan and fulvic acid. Food Science 42(7):232−39

doi: 10.7506/spkx1002-6630-20200417-226
[34]

Ying H. 2019. Research on collagen-glycosaminoglycan based biomaterials and their application in tissue engineering. Thesis. Jiangnan University, China.

[35]

Kwak HW, Shin M, Lee JY, Yun H, Song DW, et al. 2017. Fabrication of an ultrafine fish gelatin nanofibrous web from an aqueous solution by electrospinning. International Journal of Biological Macromolecules 102:1092−103

doi: 10.1016/j.ijbiomac.2017.04.087
[36]

Fan D, Ma S, Wang L, Zhao H, Zhao J, et al. 2013. 1H NMR studies of starch–water interactions during microwave heating. Carbohydrate Polymers 97:406−12

doi: 10.1016/j.carbpol.2013.05.021
[37]

Cheng S, Wang X, Li R, Yang H, Wang H, et al. 2019. Influence of multiple freeze-thaw cycles on quality characteristics of beef semimembranous muscle: With emphasis on water status and distribution by LF-NMR and MRI. Meat Science 147:44−52

doi: 10.1016/j.meatsci.2018.08.020
[38]

Lahaye M, Falourd X, Laillet B, Le Gall S. 2020. Cellulose, pectin and water in cell walls determine apple flesh viscoelastic mechanical properties. Carbohydrate Polymers 232:115768

doi: 10.1016/j.carbpol.2019.115768
[39]

Yue X, Bai Y, Wang Z, Song P. 2020. Low-field nuclear magnetic resonance study of maize seed germination process under salt stress. Journal of Agricultural Engineering 36(24):292−300

doi: 10.11975/j.issn.1002-6819.2020.24.034
[40]

Chitrakar B, Zhang M, Bhandari B. 2019. Novel intelligent detection of safer water activity by LF-NMR spectra for selected fruits and vegetables during drying. Food and Bioprocess Technology 12(7):1093−101

doi: 10.1007/s11947-019-02278-y
[41]

Duxenneuner MR, Fischer P, Windhab EJ, Cooper-White JJ. 2008. Extensional properties of hydroxypropyl ether guar gum solutions. Biomacromolecules 9:2989−96

doi: 10.1021/bm800553v
[42]

Alvarez MD, FerncLndez C, Canet W. 2009. Enhancement of freezing stability in mashed potatoes by the incorporation of kappa-carrageenan and xanthan gum blends. Journal of the Science of Food and Agriculture 89:2115−27

doi: 10.1002/jsfa.3702
[43]

Bozaci E, Akar E, Ozdogan E, Demir A, Altinisik A, et al. 2015. Application of carboxymethylcellulose hydrogel based silver nanocomposites on cotton fabrics for antibacterial property. Carbohydrate Polymers 134:128−35

doi: 10.1016/j.carbpol.2015.07.036
[44]

Wang YL, Zhou YN, Li XY, Huang J, Wahid F, et al. 2020. Continuous production of antibacterial carboxymethyl chitosan-zinc supramolecular hydrogel fiber using a double-syringe injection device. International Journal of Biological Macromolecules 156:252−61

doi: 10.1016/j.ijbiomac.2020.04.073