[1] |
Igarzábal AP. 1991. Morfología de las Provincias de Salta y Jujuy. Revista del Instituto de Geología y Minería 8:97−122 |
[2] |
National Institute of Statistics and Census (INDEC). 2019. National Agricultural Census 2018: preliminary results. Buenos Aires: INDEC. https://www.indec.gob.ar/ftp/cuadros/economia/cna2018_resultados_definitivos.pdf |
[3] |
Körner C. 2007. The use of 'altitude' in ecological research. Trends in Ecology and Evolution 22:569−74 doi: 10.1016/j.tree.2007.09.006 |
[4] |
Obschatko E, Foti MDP, Román M. 2007. Small producers in the Argentine Republic. Importance in agricultural production and employment based on the 2002 National Agricultural Census. Studies and Research Series 10. http://repiica.iica.int/docs/b0676e/b0676e.pdf |
[5] |
Rivas JG, Gutierrez AV, Defacio RA, Schimpf J, Vicario AL, et al. 2022. Morphological and genetic diversity of maize landraces along an altitudinal gradient in the Southern Andes. PLoS ONE 17(12):e0271424 doi: 10.1371/journal.pone.0271424 |
[6] |
Utrillas MP, Marín MJ, Esteve AR, Salazar G, Suárez H, et al. 2018. Relationship between erythemal UV and broadband solar irradiation at high altitude in Northwestern Argentina. Energy 162:136−47 doi: 10.1016/j.energy.2018.08.021 |
[7] |
Ritchie SW, Hanway JJ, Benson GO, 1986. How a corn plant develops. Special Report, No. 48. Iowa State University Cooperative Extension Service, Ames, IA, USA. |
[8] |
Jiang C, Edmeades GO, Armstead I, Lafitte HR, Hayward MD, et al. 1999. Genetic analysis of adaptation differences between highland and lowland tropical maize using molecular markers. Theoretical and Applied Genetics 99:1106−19 doi: 10.1007/s001220051315 |
[9] |
Salve DA, Maydup ML, Salazar GA, Tambussi EA, Antonietta M. 2023. Altitude-plant density Interaction on Andean maize: contributions to decision making. Proceedings of the XXXVI Argentinian Meeting of Plant Physiology, Rosario, Argentina, 2021. Argentina: Argentinian Society of Plant Physiology |
[10] |
Padilla JM, Otegui ME. 2005. Co-ordination between leaf initiation and leaf appearance in field-grown maize (Zea mays): genotypic differences in response of rates to temperature. Annals of Botany 96:997−1007 doi: 10.1093/aob/mci251 |
[11] |
Birch CJ, Vos J, Kiniry J, Bos HJ, Elings A. 1998. Phyllochron responds to acclimation to temperature and irradiance in maize. Field Crops Research 59:187−200 doi: 10.1016/S0378-4290(98)00120-8 |
[12] |
Riva-Roveda L, Escale B, Giauffret C, Périlleux C. 2016. Maize plants can enter a standby mode to cope with chilling stress. BMC Plant Biology 16:212 doi: 10.1186/s12870-016-0909-y |
[13] |
Cooper PJM. 1979. The association between altitude, environmental variables, maize growth and yields in Kenya. The Journal of Agricultural Science 93:635−49 doi: 10.1017/S0021859600039058 |
[14] |
Lafitte HR, Edmeades GO. 1997. Temperature effects on radiation use and biomass partitioning in diverse tropical maize cultivars. Field Crops Research 49:231−47 doi: 10.1016/S0378-4290(96)01005-2 |
[15] |
Rymen B, Fiorani F, Kartal F, Vandepoele K, Inzé D, et al. 2007. Cold nights impair leaf growth and cell cycle progression in maize through transcriptional changes of cell cycle genes. Plant Physiology 143(3):1429−38 doi: 10.1104/pp.106.093948 |
[16] |
Louarn G, Andrieu B, Giauffret C. 2010. A size-mediated effect can compensate for transient chilling stress affecting maize (Zea mays) leaf extension. New Phytologist 187:106−18 doi: 10.1111/j.1469-8137.2010.03260.x |
[17] |
Salve DA, Maydup ML, Salazar GA, Tambussi EA, Antonietta M. Canopy development, leaf traits and yield in high altitude Andean maize under contrasting plant densities in Argentina. Experimental Agriculture. In press. |
[18] |
Noblet A, Leymarie J, Bailly C. 2017. Chilling temperature remodels phospholipidome of Zea mays seeds during imbibition. Scientific Reports 7:8886 doi: 10.1038/s41598-017-08904-z |
[19] |
Nie GY, Robertson EJ, Fryer MJ, Leech RM, Baker NR. 1995. Response of the photosynthetic apparatus in maize leaves grown at low temperature on transfer to normal growth temperature. Plant, Cell & Environment 18:1−12 doi: 10.1111/j.1365-3040.1995.tb00538.x |
[20] |
Leipner J, Fracheboud Y, Stamp P. 1997. Acclimation by suboptimal growth temperature diminishes photooxidative damage in maize leaves. Plant, Cell & Environment 20:366−72 doi: 10.1046/j.1365-3040.1997.d01-76.x |
[21] |
Pasini L, Bruschini S, Bertoli A, Mazza R, Fracheboud Y et al. 2005. Photosynthetic performance of cold-sensitive mutants of maize at low temperature. Physiologia Plantarum 124:362−70 doi: 10.1111/j.1399-3054.2005.00522.x |
[22] |
Zancan S, Cesco S, Ghisi R. 2006. Effect of UV-B radiation on iron content and distribution in maize plants. Environmental and Experimental Botany 55:266−72 doi: 10.1016/j.envexpbot.2004.11.004 |
[23] |
Jovanić BR, Radenković B, Despotović-Zrakić M, Bogdanović Z, Barać D. 2022. Effect of UV-B radiation on chlorophyll fluorescence, photosynthetic activity and relative chlorophyll content of five different corn hybrids. Journal of Photochemistry and Photobiology 10:100115 doi: 10.1016/j.jpap.2022.100115 |
[24] |
Tevini M, Iwanzik W, Thoma U. 1981. Some effects of enhanced UV-B irradiation on the growth and composition of plants. Planta 153:388−94 doi: 10.1007/BF00384258 |
[25] |
Buitrago LG, Larran MT. 2000. The climate of the Province of Jujuy. Agricultural Climatology and Phenology Course, Faculty of Agricultural Sciences, National University of Jujuy. |
[26] |
Grossiord C, Buckley TN, Cernusak LA, Novick KA, Poulter B, et al. 2020. Plant responses to rising vapor pressure deficit. New Phytologist 226(6):1550−66 doi: 10.1111/nph.16485 |
[27] |
Pace BA. 2019. Physiology, photochemistry, and fitness of mexican maize landraces in the Field. Doctoral dissertation. The Ohio State University, USA. |
[28] |
Chen Y, Xiao C, Chen X, Li Q, Zhang J, et al. 2014. Characterization of the plant traits contributed to high grain yield and high grain nitrogen concentration in maize. Field Crops Research 159:1−9 doi: 10.1016/j.fcr.2014.01.002 |
[29] |
Dwyer LM, Tollenaar M. 1989. Genetic improvement in photosynthetic response of hybrid maize cultivars, 1959 to 1988. Canadian Journal of Plant Science 69:81−91 doi: 10.4141/cjps89-010 |
[30] |
Ying J, Lee EA, Tollenaar M. 2000. Response of maize leaf photosynthesis to low temperature during the grain-filling period. Field Crops Research 68:87−96 doi: 10.1016/S0378-4290(00)00107-6 |
[31] |
Honour SJ, Webb AA, Mansfield TA. 1995. The responses of stomata to abscisic acid and temperature are interrelated. Proceedings of the Royal Society of London Series B: Biological Sciences 259(1356):301−06 doi: 10.1098/rspb.1995.0044 |
[32] |
Antonietta M, de Felipe M, Rothwell SA, Williams TB, Skilleter P, et al. 2023. Prolonged low temperature exposure de-sensitises ABA-induced stomatal closure in soybean, involving an ethylene-dependent process. Plant, Cell & Environment 46(7):2128−41 doi: 10.1111/pce.14590 |
[33] |
Aguilera C, Stirling CM, Long SP. 1999. Genotypic variation within Zea mays for susceptibility to and rate of recovery from chill-induced photoinhibition of photosynthesis. Physiology Plantarum 106:429−36 doi: 10.1034/j.1399-3054.1999.106411.x |
[34] |
Salve DA, Maydup ML, Antonietta M, Salazar G. 2021. Could plant density be increased in Andean maize grown at high altitudes? Proceedings of the XXXIII Argentinian Meeting of Plant Physiology, Santa Fe, Argentina, 2021. Argentina: Argentinian Society of Plant Physiology. |
[35] |
Wilson JH, Clowes MSJ, Allison JCS. 1973. Growth and yield of maize at different altitudes in Rhodesia. Annals of Applied Biology 73(1):77−84 doi: 10.1111/j.1744-7348.1973.tb01311.x |
[36] |
Antonietta M, Fanello DD, Acciaresi HA, Guiamet JJ. 2014. Senescence and yield responses to plant density in stay green and earlier-senescing maize hybrids from Argentina. Field Crops Research 155:111−19 doi: 10.1016/j.fcr.2013.09.016 |
[37] |
Darrah LL, Penny LH. 1974. Altitude and environmental responses of entries in the 1970–71 East African maize variety trial. East African Agricultural and Forestry Journal 40(1):77−88 doi: 10.1080/00128325.1974.11662716 |
[38] |
Mercer K, Martínez-Vásquez Á, Perales HR. 2008. Asymmetrical local adaptation of maize landraces along an altitudinal gradient. Evolutionary Applications 1(3):489−500 doi: 10.1111/j.1752-4571.2008.00038.x |
[39] |
Andrade FH, Vega C, Uhart S, Cirilo A, Cantarero M, et al. 1999. Kernel number determination in maize. Crop Science 39:453−59 doi: 10.2135/cropsci1999.0011183X0039000200026x |
[40] |
Jones RJ, Quattar S, Crookston RK. 1984. Thermal environment during endosperm cell division and grain filling in maize: effects on kernel growth and development in vitro. Crop Science 24(1):133−37 doi: 10.2135/cropsci1984.0011183X002400010031x |
[41] |
Zhou B, Yue Y, Sun X, Ding Z, Ma W, et al. 2017. Maize kernel weight responses to sowing date-associated variation in weather conditions. The Crop Journal 5(1):43−51 doi: 10.1016/j.cj.2016.07.002 |
[42] |
Setter TL, Flannigan BA. 1986. Sugar and starch redistribution in maize in response to shade and ear temperature treatment. Crop science 26(3):575−79 doi: 10.2135/cropsci1986.0011183X002600030031x |
[43] |
Matsuoka Y, Vigouroux Y, Goodman MM, Sanchez GJ, Buckler E, et al. 2002. A single domestication for maize shown by multilocus microsatellite genotyping. Proceedings of the National Academy of Sciences 99(9):6080−84 doi: 10.1073/pnas.052125199 |
[44] |
Bedoya CA, Dreisigacker S, Hearne S, Franco J, Mir C, et al. 2017. Genetic diversity and population structure of native maize populations in Latin America and the Caribbean. PLoS ONE 12(4):e0173488 doi: 10.1371/journal.pone.0173488 |
[45] |
Oliszewski N, Molar R, Arreguez G, Carrizo J, Martínez JG. 2019. Identificación macro y microscópica de granos de Zea mays (poaceae) en contextos prehispánicos tempranos de la Quebrada de Los Corrales (Tucumán, Argentina). Darwiniana 7(1):5−15 doi: 10.14522/darwiniana.2019.71.806 |
[46] |
Lia VV, Poggio L, Confalonieri VA. 2009. Microsatellite variation in maize landraces from Northwestern Argentina: genetic diversity, population structure and racial affiliations. Theoretical and Applied Genetics 119:1053−67 doi: 10.1007/s00122-009-1108-0 |
[47] |
Melchiorre P, Bartoloni N, Cámara Hernández JA. 2017. Phenetic relationships among natives races of maize (Zea mays ssp. mays) from Jujuy (Argentina). Journal of the Argentine Botanical Society 52(4):717−35 doi: 10.31055/1851.2372.v52.n4.18859 |
[48] |
Cámara Hernández JA, Miante Alzogaray AM, Bellón RR, Galmarini AJ. (Eds.) 2012. Native corn breeds of Argentina. Editorial Faculty of Agronomy UBA, Buenos Aires, Argentina |
[49] |
Brieger FG, Gurgel JTA, Paterniani E, Blumenschein A, Alleoni MR. 1958. Races of Maize in Brazil and other Eastern South American countries. Publication 593. National Academy of Science - National Research Council, USA. |
[50] |
Solari LR, Gómez SG. (Eds.) 1997. Maize germplasm catalog, Argentina. Agronomic Institute for l'Oltremare, Florence, Italy. |
[51] |
Clausen AM, Ferrer ME. 1999. Conservation and evaluation of plant genetic resources in Argentina. Research Advances in Genetic Resources in the Southern Cone. Montevideo, Uruguay. pp. 5-10. http://repiica.iica.int/docs/B0948E/B0948E.PDF#page=11 |
[52] |
Khoury CK, Brush S, Costich DE, Curry HA, De Haan S. et al. 2022. Crop genetic erosion: understanding and responding to loss of crop diversity. New Phytologist 233:84−118 doi: 10.1111/nph.17733 |
[53] |
Clausen A, Ferrer M, Atencio H, Menéndez Sevillano M, Formica B, et al. 2021. Conservación, utilización y acceso a recursos fitogenéticos de importancia para la agricultura y la alimentación. Nexos, Universidad Nacional de Mar del Plata. pp 5−9. |
[54] |
Ferreyra MJ, Formica B, Lanari MR, Gadaleta P, Villamayor ML, et al. 2021. Conservation and sustainable use of local plant genetic resources for food and agriculture to contribute to the food security of small farmers in Argentina. Proceedings of the XIII International Symposium on Genetic Resources for the Americas and the Caribbean (SIRGEAC), Bogotá, Colombia. 2021. pp 409−10. ic>. pp 409-10. https://drive.google.com/file/d/1hL8VWqyfC_VpiIvSRizY-KTZ49PpuCpO/view |
[55] |
Fourastié MF, Gottlieb AM, Poggio L, González GE. 2018. Are cytological parameters of maize landraces (Zea mays ssp. mays) adapted along an altitudinal cline? Journal of Plant Research 131:285−96 doi: 10.1007/s10265-017-0996-3 |
[56] |
Sanchez JJ, Goodman MM, Stuber CW. 2000. Isozymatic and morphological diversity in the races of maize of Mexico. Economic Botany 54(1):43−59 doi: 10.1007/BF02866599 |
[57] |
Eagles HA, Lothrop JE. 1994. Highland maize from central Mexico — its origin, characteristics, and use in breeding programs. Crop science 34(1):11−19 doi: 10.2135/cropsci1994.0011183X003400010002x |
[58] |
Minetti JL, Vargas WM, Hernández CM, López CR. 2005. The seasonal regional circulation in South America. Its incidence on the climate of northwest Argentina. In The climate of northwest Argentina, ed. Minetti JL. Magna Editorial, South American Climatological Laboratory, Tucumán. pp. 39−75. |
[59] |
Rangecroft S, Harrison S, Anderson K, Magrath J, Castel AP, et al. 2013. Climate change and water resources in arid mountains: an example from the Bolivian Andes. AMBIO 42:852−63 doi: 10.1007/s13280-013-0430-6 |
[60] |
Chevallier P, Pouyaud B, Suarez W, Condom T. 2011. Climate change threats to environment in the tropical Andes: glaciers and water resources. Regional Environmental Change 11:179−87 doi: 10.1007/s10113-010-0177-6 |
[61] |
Gaitan JJ, Navarro MF, Tenti Vuegen LM, Pizarro MJ, Carfagno P. (Eds.) 2017. Estimation of soil loss due to water erosion in the Argentine Republic. Buenos Aires, INTA Editions, 2017. https://web.archive.org/web/20180413193328id_/, http://ria.inta.gob.ar/sites/default/files/actualidadimasd/libro_erosion_hidrica_rep_argentina_vf.pdf |
[62] |
Ramos RS, Hilgert NI, Lambaré DA. 2013. Traditional agriculture and the richness of maize (Zea mays). A case study in Caspala, Jujuy province, Argentina. Journal of the Argentine Botanical Society 48(3−4):607−21 doi: 10.31055/1851.2372.v48.n3-4.7623 |
[63] |
Perales R, Brush SB, Qualset CO. 2003. Landraces of maize in Central Mexico: an altitudinal transect. Economic Botany 57(1):7−20 doi: 10.1663/0013-0001(2003)057[0007:LOMICM]2.0.CO;2 |
[64] |
Hilgert NI, Gilg GE. 2005. Traditional andean agriculture and changing processes in the Zenta river basin, Salta, Northwestern Argentina. Darwiniana 43(1−4):30−43 |
[65] |
Bannert M, Stamp P. 2007. Cross-pollination of maize at long distance. European Journal of Agronomy 27(1):44−51 doi: 10.1016/j.eja.2007.01.002 |
[66] |
Vogler A, Eisenbeiss H, Aulinger-Leipner I, Stamp P. 2009. Impact of topography on cross-pollination in maize (Zea mays L.). European Journal of Agronomy 31(2):99−102 doi: 10.1016/j.eja.2009.04.003 |
[67] |
Duvick DN. 2005. The contribution of breeding to yield advances in maize (Zea mays L.). Advances in Agronomy 86:83−145 doi: 10.1016/S0065-2113(05)86002-X |
[68] |
Tokatlidis IS, Has V, Melidis V, Has I, Mylonas I, et al. 2011. Maize hybrids less dependent on high plant densities improve resource-use efficiency in rainfed and irrigated conditions. Field Crops Research 120:345−51 doi: 10.1016/j.fcr.2010.11.006 |
[69] |
Westgate ME, Forcella F, Reicosky DC, Somsen J. 1997. Rapid canopy closure for maize production in the northern US corn belt: radiation-use efficiency and grain yield. Field Crops Research 49(2−3):249−58 doi: 10.1016/S0378-4290(96)01055-6 |
[70] |
Zhai L, Zhang L, Yao H, Zheng M, Ming B, et al. 2021. The optimal cultivar × sowing date × plant density for grain yield and resource use efficiency of summer maize in the northern Huang–Huai–Hai Plain of China. Agriculture 12:7 doi: 10.3390/agriculture12010007 |
[71] |
Djaman K, Allen S, Djaman DS, Koudahe K, Irmak S, et al. 2022. Planting date and plant density effects on maize growth, yield and water use efficiency. Environmental Challenges 6:100417 doi: 10.1016/j.envc.2021.100417 |
[72] |
Tokatlidis IS, Koutroubas SD. 2004. A review of maize hybrids' dependence on high plant populations and its implications for crop yield stability. Field Crops Research 88:103−14 doi: 10.1016/j.fcr.2003.11.013 |
[73] |
Andrade FH, Otegui ME, Vega C. 2000. Intercepted radiation at flowering and kernel number in maize. Agronomy Journal 92(1):92−97 doi: 10.2134/agronj2000.92192x |
[74] |
Jaya KD, Bell CJ, Sale PW. 2001. Modification of within-canopy microclimate in maize for intercropping in the lowland tropics. Proceedings of the 10th Australian Agronomy Conference, Hobart, Australia, 2021. Australia: Australian Society of Agronomy. http://www.regional.org.au/au/asa/2001/6/b/jaya.htm |
[75] |
Maddonni GA, Otegui ME. 2004. Intra-specific competition in maize: early establishment of hierarchies among plants affects final kernel set. Field Crops Research 85(1):1−13 doi: 10.1016/S0378-4290(03)00104-7 |
[76] |
Zambrano JL, Yánez CF, Sangoquiza CA. 2021. Maize breeding in the highlands of Ecuador, Peru, and Bolivia: a review. Agronomy 11(2):212 doi: 10.3390/agronomy11020212 |
[77] |
Antonietta M, Guiamet JJ. 2019. Relative advantage of high yield potential at low-yielding environments for commercial maize hybrids cropped in Argentina. Experimental Agriculture 55(5):692−706 doi: 10.1017/S0014479718000285 |
[78] |
Rotili DH, Sadras VO, Abeledo LG, Ferreyra JM, Micheloud JR, et al. 2021. Impacts of vegetative and reproductive plasticity associated with tillering in maize crops in low-yielding environments: A physiological framework. Field Crops Research 265:108107 doi: 10.1016/j.fcr.2021.108107 |
[79] |
Rizza F, Pagani D, Gut M, Prášil IT, Lago C, et al. 2011. Diversity in the response to low temperature in representative barley genotypes cultivated in Europe. Crop Science 51(6):2759−79 doi: 10.2135/cropsci2011.01.0005 |
[80] |
Darrah LL. 1976. Altitude and environmental responses of entries in the 1974–75 Eastern African maize variety trial. East African Agricultural and Forestry Journal 42(2):153−66 |
[81] |
van Arkel H. 1980. The adaptation of cold-tolerant sorghum and maize to different environments in the highlands of Kenya. Netherlands Journal of Agricultural Science 28(2):78−96 |