[1]

Shirahata T, Ishikawa H, Kudo T, Takada Y, Hoshino A, et al. 2021. Metabolic fingerprinting for discrimination of DNA-authenticated Atractylodes plants using 1H NMR spectroscopy. Journal of Natural Medicines 75:475−88

doi: 10.1007/s11418-020-01471-0
[2]

Zhang WJ, Zhao ZY, Chang LK, Cao Y, Wang S, et al. 2021. Atractylodis Rhizoma: A review of its traditional uses, phytochemistry, pharmacology, toxicology and quality control. Journal of Ethnopharmacology 266:113415

doi: 10.1016/j.jep.2020.113415
[3]

Zhai C, Zhao J, Chittiboyina AG, Meng Y, Wang M, et al. 2020. Newly generated atractylon derivatives in processed rhizomes of Atractylodes macrocephala Koidz. Molecules 25:5904

doi: 10.3390/molecules25245904
[4]

Shi Z, Chen Y, Chen Y, Lin Y, Liu S, et al. 2011. Flora of China. Vol. 20–21. Beijing & St Loius: Science Press & Missouri Botanical Garden Press.

[5]

Zou XX, Huang LQ, Cui CH, Yuan QJ, Peng Y, et al. 2009. Genetic relationships of Atractylodes plants. Acta Pharmaceutica Sinica (Yao Xue Xue Bao) 44(6):680−86(in Chinese)

[6]

Terabayashi S, Miki E, Takeda O, Okada M, Lu Y, et al. 1997. Anatomical Variations in Rhizomes of Atractylodes lancea (Thunb.) DC. and A. chinensis Koidz. (Compositae), Original Plants of Chinese Natural Medicine, " Cangzhu". Journal of Japanese Botany 72:238−48

[7]

Davis MB, Shaw RG, Etterson JR. 2005. Evolutionary responses to changing climate. Ecology 86:1704−14

doi: 10.1890/03-0788
[8]

Zheng L. 2013. Phylogeny of Atractylodes (Asteraceae) and studies of population genetics and domestication of Atractylodes macrocephala Koidz. Thesis. Zhejiang University, Hangzhou, China. 174 pp.

[9]

Zheng L, Wang R, Chen B, Fu C. 2013. Analysis of morphological variability, correlation and principal component in a cultivated population of an important medicinal plant, Atractylodes macrocephala Koidz. (Asteraceae). Life Science Journal 10:3377−86

[10]

Xie Z. 1994. Traditional experience identification of traditional Chinese medicine varieties 'differentiation of quality' theory. Lishizhen Medicine and Materia Medica Research 3:19−21

[11]

Song H, Li S, Yu D, Zhang H. 2022. Study on the qualitative identification model of two kinds of Atractylodes lancea from different habitats and its mechanism of 'taste differentiation'. Lishizhen Medicine and Materia Medica Research 33:1146−49

[12]

Feng JX, Wu YZ, Li SY, Chang A, Yu QX, et al. 2023. Correlation between active component content and color of Atractylodes lancea and A. chinensis based on color difference principle. China Journal of Chinese Materia Medica 48(8):2086−91

doi: 10.19540/j.cnki.cjcmm.20230115.104
[13]

Horn PJ, Chapman KD. 2023. Imaging plant metabolism in situ. Journal of Experimental Botany 00:erad423

[14]

Yu DQ, Han XJ, Shan TY, Xu R, Hu J, et al. 2019. Microscopic characteristic and chemical composition analysis of three medicinal plants and surface frosts. Molecules 24:4548

doi: 10.3390/molecules24244548
[15]

Cho HD, Kim U, Suh JH, Eom HY, Kim J, et al. 2016. Classification of the medicinal plants of the genus Atractylodes using high-performance liquid chromatography with diode array and tandem mass spectrometry detection combined with multivariate statistical analysis. Journal of Separation Science 39:1286−94

doi: 10.1002/jssc.201501279
[16]

Yoshitomi T, Wakana D, Uchiyama N, Tsujimoto T, Kawano N, et al. 2020. 1H NMR-based metabolomic analysis coupled with reversed-phase solid-phase extraction for sample preparation of Saposhnikovia roots and related crude drugs. Journal of Natural Medicines 74:65−75

doi: 10.1007/s11418-019-01343-2
[17]

Tsujimoto T, Yoshitomi T, Maruyama T, Yamamoto Y, Hakamatsuka T, et al. 2018. 13C-NMR-based metabolic fingerprinting of Citrus-type crude drugs. Journal of Pharmaceutical and Biomedical Analysis 161:305−12

doi: 10.1016/j.jpba.2018.08.044
[18]

Lu R, Chen M, Feng Y, Yuan N, Zhang Y, et al. 2022. Comparative plastome analyses and genomic resource development in wild rice (Zizania spp., Poaceae) using genome skimming data. Industrial Crops and Products 186:115244

doi: 10.1016/j.indcrop.2022.115244
[19]

Cheng H, Li J, Zhang H, Cai B, Gao Z, et al. 2017. The complete chloroplast genome sequence of strawberry (Fragaria × ananassa Duch.) and comparison with related species of Rosaceae. PeerJ 5:e3919

doi: 10.7717/peerj.3919
[20]

Cai S, Zhou F, Gu Y, Huang Z, Mei Y, et al. 2020. The complete chloroplast genome sequence of Sauropus spatulifolius Beille. Mitochondrial DNA Part B 5:1703−4

doi: 10.1080/23802359.2020.1748535
[21]

Qian J, Song J, Gao H, Zhu Y, Xu J, et al. 2013. The complete chloroplast genome sequence of the medicinal plant Salvia miltiorrhiza. PloS ONE 8:e57607

doi: 10.1371/journal.pone.0057607
[22]

Gao C, Wu C, Zhang Q, Zhao X, Wu M, et al. 2020. Characterization of chloroplast genomes from two Salvia medicinal plants and gene transfer among their mitochondrial and chloroplast genomes. Frontiers in Genetics 11:574962

doi: 10.3389/fgene.2020.574962
[23]

Liang C, Wang L, Lei J, Duan B, Ma W, et al. 2019. A comparative analysis of the chloroplast genomes of four Salvia medicinal plants. Engineering 5:907−15

doi: 10.1016/j.eng.2019.01.017
[24]

Alzahrani DA, Albokhari EJ, Yaradua SS, Abba A. 2021. Comparative analysis of chloroplast genomes of four medicinal Capparaceae species: genome structures, phylogenetic relationships and adaptive evolution. Plants 10:1229

doi: 10.3390/plants10061229
[25]

Wei F, Tang D, Wei K, Qin F, Li L, et al. 2020. The complete chloroplast genome sequence of the medicinal plant Sophora tonkinensis. Scientific Reports 10:12473

doi: 10.1038/s41598-020-69549-z
[26]

Shen X, Wu M, Liao B, Liu Z, Bai R, et al. 2017. Complete chloroplast genome sequence and phylogenetic analysis of the medicinal plant Artemisia annua. Molecules 22:1330

doi: 10.3390/molecules22081330
[27]

Wu L, Nie L, Wang Q, Xu Z, Wang Y, et al. 2021. Comparative and phylogenetic analyses of the chloroplast genomes of species of Paeoniaceae. Scientific Reports 11:14643

doi: 10.1038/s41598-021-94137-0
[28]

Wang Y, Wang S, Liu Y, Yuan Q, Sun J, et al. 2021. Chloroplast genome variation and phylogenetic relationships of Atractylodes species. BMC Genomics 22:103

doi: 10.1186/s12864-021-07394-8
[29]

Mo J, Hu Y, Wang W, Cheng H, Liu H, et al. 2022. Rapid identification of Atractylodes macrocephala Koidz., Atractylodes lancea (Thunb.) DC. and hybrids with MLPA-qPCR based on nuclear genome. Journal of Applied Research on Medicinal and Aromatic Plants 28:100374

doi: 10.1016/j.jarmap.2022.100374
[30]

Yin GY, Yuan L, Wang X, Zhang ZF, Chen Y, et al. 2023. Screening of specific DNA barcode, identical germplasm resources, and analysis of genetic diversity of Atractylodes chinenesis. Acta Pharmaceutica Sinica 58(6):1693−704

doi: 10.16438/j.0513-4870.2022-1118
[31]

Ma S, Zhao J, Su W, Zheng J, Zhang S, et al. 2022. Transcriptome-derived SSR markers for DNA fingerprinting and inter-populations genetic diversity assessment of Atractylodes chinensis. The Nucleus 65:321−29

doi: 10.1007/s13237-022-00398-z
[32]

Xia M, Cai M, Comes HP, Zheng L, Ohi-Toma T, et al. 2022. An overlooked dispersal route of Cardueae (Asteraceae) from the Mediterranean to East Asia revealed by phylogenomic and biogeographical analyses of Atractylodes. Annals of Botany 130:53−64

doi: 10.1093/aob/mcac059
[33]

Wambugu PW, Brozynska M, Furtado A, Waters DL, Henry RJ. 2015. Relationships of wild and domesticated rices (Oryza AA genome species) based upon whole chloroplast genome sequences. Scientific Reports 5:13957

doi: 10.1038/srep13957
[34]

Liu J, Shi M, Zhang Z, Xie H, Kong W, et al. 2022. Phylogenomic analyses based on the plastid genome and concatenated nrDNA sequence data reveal cytonuclear discordance in genus Atractylodes (Asteraceae: Carduoideae). Frontiers in Plant Science 13:1045423

doi: 10.3389/fpls.2022.1045423
[35]

Wang G, Zhang X, Herre EA, McKey D, Machado CA, et al. 2021. Genomic evidence of prevalent hybridization throughout the evolutionary history of the fig-wasp pollination mutualism. Nature Communications 12:718

doi: 10.1038/s41467-021-20957-3
[36]

Zheng H, Fu X, Shao J, Tang Y, Yu M, et al. 2023. Transcriptional regulatory network of high-value active ingredients in medicinal plants. Trends in Plant Science 28:429−46

doi: 10.1016/j.tplants.2022.12.007
[37]

Kim HY, Kim JH. 2022. Sesquiterpenoids isolated from the rhizomes of genus Atractylodes. Chemistry & Biodiversity 19:e202200703

doi: 10.1002/cbdv.202200703
[38]

Ahmed S, Zhan C, Yang Y, Wang X, Yang T, et al. 2016. The transcript profile of a traditional Chinese medicine, Atractylodes lancea, revealing its sesquiterpenoid biosynthesis of the major active components. PLoS ONE 11:e0151975

doi: 10.1371/journal.pone.0151975
[39]

Yu ZX, Wang LJ, Zhao B, Shan CM, Zhang YH, et al. 2015. Progressive regulation of sesquiterpene biosynthesis in Arabidopsis and Patchouli (Pogostemon cablin) by the miR156-targeted SPL transcription factors. Molecular Plant 8:98−110

doi: 10.1016/j.molp.2014.11.002
[40]

Guo L, Kong JQ. 2014. cDNA cloning and expression analysis of farnesyl pyrophosphate synthase from Ornithogalum saundersiae. Zeitschrift für Naturforschung C 69:259−70

doi: 10.5560/znc.2013-0130
[41]

Cao Y, Zhang WJ, Chang LK, Kang CZ, Wang YF, et al. 2022. Comparison of transcriptome of Atractylodes lancea rhizome and exploration of genes for sesquiterpenoid biosynthesis. China Journal of Chinese Materia Medica 47:4895−907

doi: 10.19540/j.cnki.cjcmm.20220615.101
[42]

Wu J, Hu J, Yu H, Lu J, Jiang L, et al. 2023. Full-length transcriptome analysis of two chemotype and functional characterization of genes related to sesquiterpene biosynthesis in Atractylodes lancea. International Journal of Biological Macromolecules 225:1543−54

doi: 10.1016/j.ijbiomac.2022.11.210
[43]

Aquil S, Husaini AM, Abdin MZ, Rather GM. 2009. Overexpression of the HMG-CoA reductase gene leads to enhanced artemisinin biosynthesis in transgenic Artemisia annua plants. Planta Medica 75(13):1453−58

doi: 10.1055/s-0029-1185775
[44]

Xia Y, Gu W, Chao JG, Sheng YL, Wang YZ, et al. 2020. Effects of exogenous calcium chloride on growth physiological indexes and leaf key enzyme gene expression of Atractylodes lancea (Thunb.) DC. under high-temperature stress. Journal of Southern Agriculture 51(2):267−74

doi: 10.3969/j.issn.2095-1191.2020.02.003
[45]

Tao JH, Wang DG, Pu XL, Zhao X, Jiang S. 2013. Promotion of HMGR activation and β-eudesmol biosynthesis in Atractylodes lancea suspension cell culture by hydrogen peroxide-mediated endophytic fungal elicitor. Chinese Traditional and Herbal Drugs 44(19):2740−44

[46]

Jiang L, Gu W, Chao J, Sang X, Han Y, et al. 2017. Gene cloning of farnesyl pyrophosphate synthase in Atractylodes lancea and its expression pattern analysis. Chinese Traditional and Herbal Drugs 48(4):760−66

[47]

Deng J, Wang Q, Gong L, Liu H, Yu K. 2017. Cloning and analysis of DXS gene from Atractylodes lancea. Chinese Journal of Experimental Traditional Medical Formulae 23(16):39−44

[48]

Chen LN, Wan QY, Deng J, Ming SF, Gong L, et al. 2019. Cloning and analysis of two DXR genes (AIDXR) in Astractylodes lancea. Molecular Plant Breeding 17(13):4249−56

[49]

Courchesne NMD, Parisien A, Wang B, Lan CQ. 2009. Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches. Journal of Biotechnology 141:31−41

doi: 10.1016/j.jbiotec.2009.02.018
[50]

Figueroa-Balderas RE, García-Ponce B, Rocha-Sosa M. 2006. Hormonal and stress induction of the gene encoding common bean acetyl-coenzyme A carboxylase. Plant Physiology 142:609−19

doi: 10.1104/pp.106.085597
[51]

Tao JH, Wang DG, Pu XL, Huang JH, Zhao X, et al. 2014. Signal transduction of atractylodin biosynthesis in Atractylodes lancea cell induced by endophytic fungal elicitor mediated with nitric oxide followed by salicylic acid. Chinese Traditional and Herbal Drugs 45:701−8

[52]

Klaus D, Ohlrogge JB, Neuhaus HE, Dörmann P. 2004. Increased fatty acid production in potato by engineering of acetyl-CoA carboxylase. Planta 219:389−96

doi: 10.1007/s00425-004-1236-3
[53]

Wang Y, Jing F, Yu S, Chen Y, Wang T, et al. 2011. Co-overexpression of the HMGR and FPS genes enhances artemisinin content in Artemisia annua L. Journal of Medicinal Plants Research 5:3396−403

[54]

Zhou J. 2016. Mechanisms underlying Pseudomonas fluorescens efficiently increase the sesquiterpenoid content and diversity in Atractylodes lancea. Thesis. Nanjing Normal University, China. 187 pp.

[55]

Huang Q. 2016. The mechanism of diterpenoid biosynthetic in Coleus forskohlii and the differential gene expression between leaf and rhizome in Atractylodes lancea. Thesis. Hubei University of Traditional Chinese Medicine, China. 140 pp.

[56]

Shen Q, Chen Y, Wang T, Wu SY, Lu X, et al. 2012. Overexpression of the cytochrome P450 monooxygenase (CYP71AV1) and cytochrome P450 reductase (CPR) genes increased artemisinin content in Artemisia annua (Asteraceae). Genetics and Molecular Research 11:3298−309

doi: 10.4238/2012.September.12.13
[57]

Zhang K, Luo Z, Guo Y, Shi H, Ma X. 2017. Research progress on regulation of bHLH transcription factors on biosynthetic pathway of terpenoids in medicinal plants. Modern Chinese Medicine 19:142−47

doi: 10.13313/j.issn.1673-4890.2017.1.028
[58]

Tan H, Xiao L, Gao S, Li Q, Chen J, et al. 2015. TRICHOME AND ARTEMISININ REGULATOR 1 is required for trichome development and artemisinin biosynthesis in Artemisia annua. Molecular Plant 8:1396−411

doi: 10.1016/j.molp.2015.04.002
[59]

Yang L, Yang C, Li C, Zhao Q, Liu L, et al. 2016. Recent advances in biosynthesis of bioactive compounds in traditional Chinese medicinal plants. Science Bulletin 61:3−17

doi: 10.1007/s11434-015-0929-2
[60]

Jiang W, Fu X, Pan Q, Tang Y, Shen Q, et al. 2016. Overexpression of AaWRKY1 leads to an enhanced content of artemisinin in Artemisia annua. BioMed Research International 2016:7314971

doi: 10.1155/2016/7314971
[61]

Huang Q, Huang X, Deng J, Liu H, Liu Y, et al. 2016. Differential gene expression between leaf and rhizome in Atractylodes lancea: a comparative transcriptome analysis. Frontiers in Plant Science 7:348

doi: 10.3389/fpls.2016.00348
[62]

Khan A, Shrestha A, Shaju M, Panigrahi KC, Dey N. 2020. Identification of miRNA targets by AtFT overexpression in tobacco. Plant Molecular Biology Reporter 38:48−61

doi: 10.1007/s11105-019-01180-3
[63]

Deng J, Chen L, Zhang A, Wang M, Gong L, et al. 2023. Comparative analysis and functional identification of Rhizome miRNAs of two Atractylodes lancea ecotypes. Journal of Plant Biology 66:135−45

doi: 10.1007/s12374-023-09381-w
[64]

Li Y, Kong D, Fu Y, Sussman MR, Wu H. 2020. The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiology and Biochemistry 148:80−89

doi: 10.1016/j.plaphy.2020.01.006
[65]

Xie J. 2015. Study on the influence of producing area and provenance factors on the growth and quality of Scutellariae Rhizoma. Thesis. Beijing University of Traditional Chinese Medicine, China. 109 pp.

[66]

Zeng Y, Guo L, Chen B, Li H, Lin S, et al. 2010. The effects of different temperatures on the growth and components of essential oil of Atractylodes lancea (Thunb.) DC. World Science and Technology (Modernization of Traditional Chinese Medicine and Materia Medica) 12:773−78

[67]

Zhang Y, Miki S, Yang G, Takeda XJ, Chen ML, et al. 2015. Effects of different microhabitats on growth and four kinds of volatile oil components of Atractylodes lancea. China Journal of Chinese Materia Medica 40:4142−48

[68]

Li Q. 2018. Mechanism of biosynthesis of sesquiterpenes volatile oil in Atractylodes lancea under different light. Thesis. Guangdong Pharmaceutical University, China. 105 pp.

[69]

Guo X, Li Q, Yan B, Wang Y, Wang S, et al. 2022. Mild shading promotes sesquiterpenoid synthesis and accumulation in Atractylodes lancea by regulating photosynthesis and phytohormones. Scientific Reports 12:21648

doi: 10.1038/s41598-022-25494-7
[70]

Wang YZ, Gu W, Chao JG, Sheng YL, Xia Y, et al. 2019. Effects of different photoperiods on the growth and some physiological and biochemical indexes of Atractylodes lancea (Thunb.) DC. during vegetative growth. Journal of Southern Agriculture 50(12):2673−79

doi: 10.3969/j.issn.2095-1191.2019.12.07
[71]

Tang H, Hu YY, Yu WW, Song LL, Wu JS. 2015. Growth, photosynthetic, and physiological responses of Torreya grandis seedlings to varied light environments. Trees 29:1011−22

doi: 10.1007/s00468-015-1180-9
[72]

Zhang A, Liu M, Gu W, Chen Z, Gu Y, et al. 2021. Effect of drought on photosynthesis, total antioxidant capacity, bioactive component accumulation, and the transcriptome of Atractylodes lancea. BMC Plant Biology 21:293

doi: 10.1186/s12870-021-03048-9
[73]

Gu YH, Feng X, Xia B. 2008. Effect of water stress on growth and essential oil content of Atractylodes lancea rhizome. Journal of Plant Resources and Environment 3:23−27

doi: 10.3969/j.issn.1674-7895.2008.03.004
[74]

Zhou XL, Weng LL, Jiang DC, Xiao CP. 2020. Photosynthetic characteristics and stress resistance physiological response of Atractylodes chinensis under drought stress. Journal of Chinese Medicinal Materials 43:15−19

doi: 10.13863/j.issn1001-4454.2020.01.004
[75]

Morshedloo MR, Craker LE, Salami A, Nazeri V, Sang H, et al. 2017. Effect of prolonged water stress on essential oil content, compositions and gene expression patterns of mono-and sesquiterpene synthesis in two oregano (Origanum vulgare L.) subspecies. Plant Physiology and Biochemistry 111:119−28

doi: 10.1016/j.plaphy.2016.11.023
[76]

Hu YW, Chao JG, Lu QJ, Gu W, Zhang WM. 2018. Photosynthesis and physiological responses of Atractylodes lancea to different phosphorus supply levels. Heilongjiang Agricultural Sciences 12:20−4

doi: 10.11942/j.issn1002-2767.2018.12.0020
[77]

Zhou J, Guo L, Huang L, Zhang Y, Han X. 2008. Effect of low-potassium stress on growth of Atractylodes lancea and components of its essential oil. Chinese Traditional and Herbal Drugs 39:1548−52

doi: 10.3321/j.issn:0253-2670.2008.10.034
[78]

Yang Y. 2016. The effects of different N and K levels on the growth and quality of Atractylodes lancea. Thesis. Huazhong Agricultural University, China. 62 pp.

[79]

Wang Y. 2011. Study on the interaction mechanism between endophytic fungi and their host plants of Atractylodes lancea. Thesis. Nanjing Normal University, China. 66 pp.

[80]

Li L. 2013. Effects of endophytic fungi from Atractylodes lancea on selective degradation of host volatile oil and growth of host seedlings. Thesis. Nanjing Normal University, China. 55 pp.

[81]

Ren C. 2014. Study on signal regulation mechanism of endophytic bacteria promoting volatile oil accumulation of medicinal plant Atractylodes lancea. Theis. Nanjing Normal University, China. 119 pp.

[82]

Zhou JY, Yuan J, Li X, Ning YF, Dai CC. 2016. Endophytic bacterium-triggered reactive oxygen species directly increase oxygenous sesquiterpenoid content and diversity in Atractylodes lancea. Applied and Environmental Microbiology 82:1577−85

doi: 10.1128/AEM.03434-15
[83]

Lv L, Wang H, Liang X, Hao S, Du W, et al. 2014. Effects of different chemotypes and seasonal dynamic variation on the species diversity of endophytic fungal communities harbored in Atractylodes lancea. Acta Ecologica Sinica 34:7300−10

doi: 10.5846/stxb201303200468
[84]

Yuan J, Sun K, Deng-Wang MY, Dai CC. 2016. The mechanism of ethylene signaling induced by endophytic fungus Gilmaniella sp. AL12 mediating sesquiterpenoids biosynthesis in Atractylodes lancea. Frontiers in Plant Science 7:361

doi: 10.3389/fpls.2016.00361
[85]

Zhang J, Liu D, Guo L, Jin H, Yang G, et al. 2011. Effects of arbuscular mycorrhizae fungi on biomass and essential oil in rhizome of Atractylodes lancea in different temperatures. Chinese Traditional and Herbal Drugs 42:372−75

[86]

Liang X, Tang M, Lv L, Zhao X, Dai C. 2018. Effects of three arbuscular mycorrhizal fungi (AMF) species on growth, physiology, and major components of essential oil of Atractylodes lancea. Chinese Journal of Ecology 37:1871−79

doi: 10.13292/j.1000-4890.201806.010
[87]

Wang H, Wang Y, Kang C, Wang S, Zhang Y, et al. 2022. Drought stress modifies the community structure of root-associated microbes that improve Atractylodes lancea growth and medicinal compound accumulation. Frontiers in Plant Science 13:1032480

doi: 10.3389/fpls.2022.1032480
[88]

Ma SC, Wang Y, Wei F. 2023. Progress and exploration of quality control model of traditional Chinese medicine in the past decade. China Journal of Pharmacy 58:2−9

doi: 10.11669/cpj.2023.01.002
[89]

Liu G, Fu S, Feng S. 1979. Manual of Chinese Medicines. Beijing: Institute of Materia Medica of Chinese Academy of Medicinal Sciences, People's Health Publishing House. pp.152−64.

[90]

Nishikawa Y, Watanabe Y, Seto T. 1975. Studies on the evaluation of crude drugs (I) : comparative studies on the components of Atractylodes Rhizomes. Shoyakugaku Zasshi 29:139−46

[91]

Fei YQ, Zhang F, Huang DD, Xu Q, Jiang T, et al. 2023. Discusion on improving the quality standard of Atractylodis rhizoma and decoction pieces. China Hospital Pharmaceutical Journal 43:887−91

doi: 10.13286/j.1001-5213.2023.08.10
[92]

Jia C, Mao D, Zhang W, Sun X. 2004. Studies on chemical constituents in essential oil from wild Atractylodes lancea in Dabie mountains. Journal of Chinese Medicinal Materials 27:571−74

doi: 10.3321/j.issn:1001-4454.2004.08.013
[93]

Ji Y, Wang Y, Piao J. 2018. Analysis of volatile components in Atractylodes japonica by GC-MS. Journal of Agricultural Science Yanbian University 40:52−56

doi: 10.13478/j.cnki.jasyu.2018.03.008
[94]

Yao F, Liu W, Qiu Q. 2001. GC-MS analysis of volatile oil from Atractylodes chinensis. Journal of Chinese Medicinal Materials 24:643−45

doi: 10.3321/j.issn:1001-4454.2001.09.011
[95]

Guo LP, Huang LQ, Hu J, Shao AJ. 2008. Variation rules and chemotype classification of Atractylodes lancea essential oil based on bio-information science. Resources Science 30:770−77

doi: 10.3321/j.issn:1007-7588.2008.05.020
[96]

Wang F, Ouyang Z, Guo LP, Zhao M, Peng HS, et al. 2014. Comprehensive chemical pattern recognition of Atractylodes lancea. China Journal of Traditional Chinese Medicine 39:2536−41

[97]

Li ZY, Luo YQ, Yang WH, Pan XJ, Liang H, et al. 2021. Study on quality evaluation of Atractylodis rhizoma based on UPLC fingerprint and multi-components determination. China Journal of Traditional Chinese Medicine Information 28:88−92

[98]

Li QY, Wu WG, Cui B, An Y, Yang M, et al. 2018. Quality evaluation of Atractylodes by high-performance liquid chromatography and multivariate statistical analysis. Chinese Journal of Pharmaceutical Analysis 38:598−608

doi: 10.16155/j.0254-1793.2018.04.06
[99]

Lei H, Yue J, Yin XY, Fan W, Tan SH, et al. 2023. HS-SPME coupled with GC-MS for elucidating differences between the volatile components in wild and cultivated Atractylodes chinensis. Phytochemical Analysis 34:317−28

doi: 10.1002/pca.3210
[100]

Wang D, Chen F, Wang CY, Han X, Dai CC. 2022. Early stem growth mutation alters metabolic flux changes enhance sesquiterpenoids biosynthesis in Atractylodes lancea (Thunb.) DC. Plant Cell, Tissue and Organ Culture 149:467−83

doi: 10.1007/s11240-022-02240-5
[101]

Yun C, Zhao Z, Gu L, Zhang Z, Wang S, et al. 2022. In vitro production of atractylon and β-eudesmol from Atractylodes chinensis by adventitious root culture. Applied Microbiology and Biotechnology 106:7027−37

doi: 10.1007/s00253-022-12194-5
[102]

Ouyang Z, Zhang L, Zhao M, Wang P, Wei Y, et al. 2012. Identification and quantification of sesquiterpenes and polyacetylenes in Atractylodes lancea from various geographical origins using GC-MS analysis. Revista Brasileira de Farmacognosia 22:957−63

doi: 10.1590/S0102-695X2012005000051
[103]

Jiang DQ, Wang HY, Li T, Kang CZ, Guo XZ, et al. 2019. Research progress of the effects of environmental stress on medical plant Atractylodes lancea. World Chinese Medicine 14:2829−34

doi: 10.3969/j.issn.1673-7202.2019.11.002