[1] |
Iqbal J, Akbar W, Aftab M, Younas I, Jamil U. 2019. Heat and mass transfer modeling for fruit drying: a review. MOJ Food Processing & Technology 7(3):69−73 doi: 10.15406/mojfpt.2019.07.00222 |
[2] |
Berk Z. 2018. Food process engineering and technology. 3rd Edition. United Kingdom: Academic press.https://doi.org/10.1016/B978-0-12-373660-4.X0001-4 |
[3] |
Jayas DS. 2016. Food dehydration. In Reference Module in Food Science. University of Manitoba, Winnipeg, MB, Canada: Elsevier. https://doi.org/10.1016/b978-0-08-100596-5.02913-9 |
[4] |
Fellows PJ. 2022. Food processing technology: principles and practice. 5th Edition. UK: Woodhead publishing. https://doi.org/10.1016/C2019-0-04416-0 |
[5] |
Babu AK, Kumaresan G, Raj VAA, Velraj R. 2018. Review of leaf drying: Mechanism and influencing parameters, drying methods, nutrient preservation, and mathematical models. Renewable and Sustainable Energy Reviews 90:536−56 doi: 10.1016/j.rser.2018.04.002 |
[6] |
Calín-Sánchez Á, Lipan L, Cano-Lamadrid M, Kharaghani A, Masztalerz K, et al. 2020. Comparison of traditional and novel drying techniques and its effect on quality of fruits, vegetables and aromatic herbs. Foods 9:1261 doi: 10.3390/foods9091261 |
[7] |
International Nut & Dried Fruit Council (INC). 2021. Nuts & Dried Fruits Statistical Yearbook 2020/2021. https://vdocuments.mx/document/nuts-dried-fruits-statistical-yearbook-2020-2021.html?page=1 |
[8] |
Opara IK, Fawole OA, Opara UL. 2021. Postharvest losses of pomegranate fruit at the packhouse and implications for sustainability indicators. Sustainability 13:5187 doi: 10.3390/su13095187 |
[9] |
Van Lin M, Van Den Bos A, Sterras N. 2018. The Current State of Fruit and Vegetable Agro-Processing in South Africa, Netherlands Enterprise Agency, Netherlands. |
[10] |
Corbo MR, Bevilacqua A, Petruzzi L, Casanova FP, Sinigaglia M. 2014. Functional beverages: the emerging side of functional foods: commercial trends, research, and health implications. Comprehensive reviews in food science and food safety 13(6):1192−206 doi: 10.1111/1541-4337.12109 |
[11] |
Mushtaq SM, Gangoo SA. 2017. Anardana (dehydrated wild pomegranate arils) as livelihood option for rural communities in Chenab valley of Jammu and Kashmir. Indian Journal of Horticulture 74:306−9 doi: 10.5958/0974-0112.2017.00063.9 |
[12] |
Cano-Lamadrid M, Lech K, Michalska A, Wasilewska M, Figiel A, et al. 2017. Influence of osmotic dehydration pre-treatment and combined drying method on physico-chemical and sensory properties of pomegranate arils, cultivar Mollar de Elche. Food Chemistry 232:306−15 doi: 10.1016/j.foodchem.2017.04.033 |
[13] |
Radojčin M, Pavkov I, Bursać Kovačević D, Putnik P, Wiktor A, et al. 2021. Effect of selected drying methods and emerging drying intensification technologies on the quality of dried fruit: A review. Processes 9:132 doi: 10.3390/pr9010132 |
[14] |
Márquez-Cardozo CJ, Caballero-Gutiérrez BL, Ciro-Velázquez HJ, Restrepo-Molina DA. 2021. Effect of pretreatment and temperature on the drying kinetics and physicochemical and techno-functional characteristics of pumpkin (Cucurbita maxima). Heliyon 7:e06802 doi: 10.1016/j.heliyon.2021.e06802 |
[15] |
Moradinezhad F, Ansarifar E, Mohammadian Moghaddam M. 2020. Extending the shelf life and maintaining quality of minimally-processed pomegranate arils using ascorbic acid coating and modified atmosphere packaging. Journal of Food Measurement and Characterization 14:3445−54 doi: 10.1007/s11694-020-00591-1 |
[16] |
Cano-Lamadrid M, Vázquez-Araújo L, Sánchez-Rodríguez L, Wodyło A, Carbonell-Barrachina ÁA. 2018. Consumers' opinion on dried pomegranate arils to determine the best processing conditions. Journal of Food Science 83:3085−91 doi: 10.1111/1750-3841.14390 |
[17] |
Stiletto A, Trestini S. 2021. Factors behind consumers' choices for healthy fruits: a review of pomegranate and its food derivatives. Agricultural and Food Economics 9:1−27 doi: 10.1186/s40100-021-00202-7 |
[18] |
Adetoro AO, Opara UL, Fawole OA. 2021. Effect of blanching on enzyme inactivation, physicochemical attributes and antioxidant capacity of hot-air dried pomegranate (Punica granatum L.) arils (cv. Wonderful). Processes 9:25 doi: 10.3390/pr9010025 |
[19] |
Mokapane FM, Fawole OA, Opara UL. 2022. Effects of pretreatments on the enzymatic activity, drying behaviour, and rehydration of dried pomegranate arils. Acta Horticultura 1349:653−62 doi: 10.17660/actahortic.2022.1349.84 |
[20] |
Welsh ZG, Simpson MJ, Khan MIH, Karim A. 2021. A multiscale approach to estimate the cellular diffusivity during food drying. Biosystems Engineering 212:273−89 doi: 10.1016/j.biosystemseng.2021.10.017 |
[21] |
Akter F, Muhury R, Sultana A, Deb UK. 2022. A comprehensive review of mathematical modeling for drying processes of fruits and vegetables. International Journal of Food Science 2022:6195257 doi: 10.1155/2022/6195257 |
[22] |
Mujumdar AS. 2014. Fundamental aspects: Principles, classi cation, and selection of dryers. In Handbook of Industrial Drying, ed. Mujumdar AS. 4th Edition. Boca Raton: CRC Press. pp. 3-30. https://doi.org/10.1201/b17208 |
[23] |
More V, Kapse B, Kadam A, Pimpalpalle L. 2017. Studies on drying of pomegranate arils for preparation of anardana. International Journal of Chemical Studies 5(3):724−28 |
[24] |
Adetoro AO, Tsige AA, Opara UL, Fawole OA. 2020. Mathematical modelling of blanch-assisted drying of pomegranate (Punica granatum) arils in a hot-air drier. Processes 8:611 doi: 10.3390/pr8050611 |
[25] |
Defraeye T. 2014. Advanced computational modelling for drying processes – A review. Applied Energy 131:323−44 doi: 10.1016/j.apenergy.2014.06.027 |
[26] |
Huang D, Yang P, Tang X, Luo L, Sunden B. 2021. Application of infrared radiation in the drying of food products. Trends in Food Science & Technology 110:765−77 doi: 10.1016/j.jpgs.2021.02.039 |
[27] |
Hii CL, Jangam SV, Ong SP, Mujumdar AS. 2012. Solar drying: Fundamentals, applications and innovations. Singapore: TPR Group Publication. |
[28] |
Bonesi M, Tundis R, Sicari V, Loizzo MR. 2019. The juice of pomegranate (Punica granatum L.): Recent studies on its bioactivities. In Quality control in the beverage industry, eds. Grumezescu AM, Holban AM. Vol. 17. Cambridge, MA, US: Academic Press. pp. 459−89. https://doi.org/10.1016/b978-0-12-816681-9.00013-8 |
[29] |
Tinebra I, Scuderi D, Sortino G, Mazzaglia A, Farina V. 2021. Pomegranate cultivation in mediterranean climate: Plant adaptation and fruit quality of 'Mollar de Elche' and 'Wonderful' cultivars. Agronomy 11:156 doi: 10.3390/agronomy11010156 |
[30] |
Holland D, Hatib K, Bar-Ya'akov I. 2009. Pomegranate: botany, horticulture, breeding. In Horticultural Reviews, ed. Janick J. vol. 35. Hoboken, New Jerse: John Wiley & Sons. pp. 127−91. https://doi.org/10.1002/9780470593776.ch2 |
[31] |
Venkitasamy C, Zhao L, Zhang R, Pan Z. 2019. Pomegranate. In Integrated Processing Technologies for Food and Agricultural By-Products, ed. Pan Z, Zhang R, Zicari S. San Diego, CA, US: Academic Press. pp. 181-216. https://doi.org/10.1016/b978-0-12-814138-0.00008-3 |
[32] |
Pienaar L, Barends-Jones V. 2021. The economic contribution of South Africa's pomegranate industry. Agriprobe 18:57−64 |
[33] |
Amos Fawole O, Linus Opara U. 2012. Composition of trace and major minerals in different parts of pomegranate (Punica granatum) fruit cultivars. British Food Journal 114:1518−32 doi: 10.1108/00070701211273009 |
[34] |
Kandylis P, Kokkinomagoulos E. 2020. Food applications and potential health benefits of pomegranate and its derivatives. Foods 9:122 doi: 10.3390/foods9020122 |
[35] |
Dak M, Sagar VR, Jha SK. 2014. Shelf-life and kinetics of quality change of dried pomegranate arils in flexible packaging. Food Packaging and Shelf Life 2:1−6 doi: 10.1016/j.fpsl.2014.04.005 |
[36] |
Opara LU, Al-Ani MR, Al-Shuaibi YS. 2009. Physico-chemical properties, vitamin C content, and antimicrobial properties of pomegranate fruit (Punica granatum L.). Food and Bioprocess Technology 2:315−21 doi: 10.1007/s11947-008-0095-5 |
[37] |
Ge S, Duo L, Wang J, Yang J, Li Z, et al. 2021. A unique understanding of traditional medicine of pomegranate, Punica granatum L. and its current research status. Journal of Ethnopharmacology 271:113877 doi: 10.1016/j.jep.2021.113877 |
[38] |
Domínguez-Avila JA, Villa-Rodriguez JA, Montiel-Herrera M, Pacheco-Ordaz R, Roopchand DE, et al. 2021. Phenolic compounds promote diversity of gut microbiota and maintain colonic health. Digestive Diseases and Sciences 66:3270−89 doi: 10.1007/s10620-020-06676-7 |
[39] |
Fourati M, Smaoui S, Hlima HB, Elhadef K, Braïek OB, et al. 2020. Bioactive compounds and pharmacological potential of pomegranate (Punica granatum) seeds − a review. Plant Foods for Human Nutrition 75:477−86 doi: 10.1007/s11130-020-00863-7 |
[40] |
Wang L, Martins-Green M. 2014. Pomegranate and its components as alternative treatment for prostate cancer. International Journal of Molecular Sciences 15:14949−66 doi: 10.3390/ijms150914949 |
[41] |
Farooqi AA. 2021. Regulation of deregulated cell signaling pathways by pomegranate in different cancers: Re-interpretation of knowledge gaps. Seminars in Cancer Biology 73:294−301 doi: 10.1016/j.semcancer.2021.01.008 |
[42] |
Guerrero-Solano JA, Jaramillo-Morales OA, Velázquez-González C, De la O-Arciniega M, Castañeda-Ovando A, et al. 2020. Pomegranate as a potential alternative of pain management: a review. Plants 9:419 doi: 10.3390/plants9040419 |
[43] |
Eghbali S, Askari SF, Avan R, Sahebkar A. 2021. Therapeutic effects of Punica granatum (pomegranate): an updated review of clinical trials. Journal of Nutrition and Metabolism 2021:5297162 doi: 10.1155/2021/5297162 |
[44] |
Ammar A, Bailey SJ, Chtourou H, Trabelsi K, Turki M, et al. 2018. Effects of pomegranate supplementation on exercise performance and post-exercise recovery in healthy adults: a systematic review. British Journal of Nutrition 120:1201−16 doi: 10.1017/S0007114518002696 |
[45] |
Xiao HW, Pan Z, Deng LZ, El-Mashad HM, Yang XH, et al. 2017. Recent developments and trends in thermal blanching – A comprehensive review. Information Processing in Agriculture 4:101−27 doi: 10.1016/j.inpa.2017.02.001 |
[46] |
Deng LZ, Mujumdar AS, Zhang Q, Yang XH, Wang J, et al. 2019. Chemical and physical pretreatments of fruits and vegetables: Effects on drying characteristics and quality attributes – a comprehensive review. Critical Reviews in Food Science and Nutrition 59:1408−32 doi: 10.1080/10408398.2017.1409192 |
[47] |
Lund MN, Ray CA. 2017. Control of Maillard reactions in foods: Strategies and chemical mechanisms. Journal of Agricultural and Food Chemistry 65:4537−52 doi: 10.1021/acs.jafc.7b00882 |
[48] |
Dziki D. 2020. Recent trends in pretreatment of food before freeze-drying. Processes 8:1661 doi: 10.3390/pr8121661 |
[49] |
Law CL, Chen HHH, Mujumdar AS. 2014. Food technologies: Drying. In Encyclopedia of food safety: Foods, Mater. Technol. Risks, ed. Motarjemi Y. vol. 3. San Diego, CA, US: Academic Press. pp. 156−67. https://doi.org/10.1016/b978-0-12-378612-8.00268-7 |
[50] |
Mwende R, Owino W, Imathiu S. 2018. Effects of pretreatment during drying on the antioxidant properties and color of selected tomato varieties. Food Science & Nutrition 6:503−11 doi: 10.1002/fsn3.581 |
[51] |
Bassey EJ, Cheng JH, Sun DW. 2021. Novel nonthermal and thermal pretreatments for enhancing drying performance and improving quality of fruits and vegetables. Trends in Food Science & Technology 112:137−48 doi: 10.1016/j.jpgs.2021.03.045 |
[52] |
Agriculture USDo. 2019. Pomegranates. United States of America: Food Data Central |
[53] |
Tilahun Dufera L, Hofacker W, Esper A, Hensel O. 2022. Effect of different predrying treatments on physicochemical quality and drying Kinetics of twin layer solar tunnel dried tomato (Lycopersicon esculentum L.) slices. Journal of Food Quality 2022:9095922 doi: 10.1155/2022/9095922 |
[54] |
Sun X, Jin X, Fu N, Chen X. 2020. Effects of different pretreatment methods on the drying characteristics and quality of potatoes. Food Science & Nutrition 8:5767−75 doi: 10.1002/fsn3.1579 |
[55] |
Miftari H. 2021. Effect of drying in the preservation of apple and its vitamin C content. International Journal of Food Technology and Nutrition 4:44−48 |
[56] |
Biradar A, Bharadiya P, Jadhav H. 2009. Effect of intermittent drying technique on quality of anardana. International Journal of Agricultural Engineering 2:75−78 |
[57] |
Vardin H, Yilmaz F. 2018. The effect of blanching pre-treatment on the drying kinetics, thermal degradation of phenolic compounds and hydroxymethyl furfural formation in pomegranate arils. Italian Journal of Food Science 30:156−69 doi: 10.14674/IJFS-947 |
[58] |
Bai JW, Sun DW, Xiao HW, Mujumdar A, Gao ZJ. 2013. Novel high-humidity hot air impingement blanching (HHAIB) pretreatment enhances drying kinetics and color attributes of seedless grapes. Innovative Food Science & Emerging Technologies 20:230−37 doi: 10.1016/j.ifset.2013.08.011 |
[59] |
Cui C, Zhao D, Huang J, Hao J. 2022. Progress on research and development of goji berry drying: A review. International Journal of Food Properties 25:435−49 doi: 10.1080/10942912.2022.2046054 |
[60] |
Doymaz İ. 2012. Prediction of drying characteristics of pomegranate arils. Food Analytical Methods 5:841−48 doi: 10.1007/s12161-011-9315-0 |
[61] |
Tsironi TN, Taoukis PS. 2019. Advances in conventional and nonthermal processing of fish for quality improvement and shelf life extension. In Reference Module in Food Science. Amsterdam: Elsevier. https://doi.org/10.1016/b978-0-08-100596-5.22618-8 |
[62] |
Rastogi NK, Raghavarao KSMS, Niranjan K. 2014. Recent developments in osmotic dehydration. In Emerging Technologies for Food Processing, ed. Sun DW. 2nd Edition. Dublin: Elsevier. pp. 181−212. https://doi.org/10.1016/B978-0-12-411479-1.00011-5 |
[63] |
Madhushree M, Bhuvaneshwari G, Jagadeesh SL, Ganiger VM. 2017. Studies on effect of pre-treatments and drying methods on quality of dried pomegranate arils. International Journal of Agricultural Science and Research 7(2):489−98 |
[64] |
Haq MA, Hasnain A, Saeed SA. 2012. Effect of osmotic pre-treatment on drying characteristics of pomegranate (Punica granatum L.). International Journal of Food Engineering 8(2 doi: 10.1515/1556-3758.1858 |
[65] |
Joslyn MA, Braverman JBS. 1954. The chemistry and technology of the pretreatment and preservation of fruit and vegetable products with sulfur dioxide and sulfites. Advances in Food Research 5:97−160 doi: 10.1016/s0065-2628(08)60222-0 |
[66] |
Nicholas PF, Cruess WV. 1932. Sulfur dioxide as dried fruit preservative. Industrial & Engineering Chemistry 24:649−50 doi: 10.1021/ie50270a016 |
[67] |
Kochen J. 1973. Sulfur dioxide, a respiratory tract irritant, even if ingested. Pediatrics 52:145−46 |
[68] |
Lou T, Huang W, Wu X, Wang M, Zhou L, et al. 2017. Monitoring, exposure and risk assessment of sulfur dioxide residues in fresh or dried fruits and vegetables in China. Food Additives & Contaminants:Part A 34:918−27 doi: 10.1080/19440049.2017.1313458 |
[69] |
Karaaslan M, Yilmaz FM, Cesur Ö, Vardin H, Ikinci A, et al. 2014. Drying kinetics and thermal degradation of phenolic compounds and anthocyanins in pomegranate arils dried under vacuum conditions. International Journal of Food Science & Technology 49:595−605 doi: 10.1111/ijfs.12342 |
[70] |
Sharma SR, Bhatia S, Arora S, Mittal TC, Gupta SK. 2013. Effect of storage conditions and packaging material on quality of anardana. International Journal of Advances in Engineering & Technology 6:8 |
[71] |
Thakur NS, Bhat MM, Rana N, Joshi VK. 2010. Standardization of pre-treatments for the preparation of dried arils from wild pomegranate. Journal of Food Science and Technology 47:620−25 doi: 10.1007/s13197-010-0091-4 |
[72] |
Bakshi P, Bhushan B, Wali V, Bakshi M, Sharma A, et al. 2013. Standardization of drying method and organoleptic evaluation of wild pomegranate (Anardana) seeds. World Journal of Agricultural Sciences 9:397−400 |
[73] |
Singh D, Chaudhary M, Meena ML, Wangchu L, Dayal H. 2011. Drying of pomegranate seeds (Anardana) under different conditions. Acta Horticulturae 890:433−39 doi: 10.17660/actahortic.2011.890.59 |
[74] |
Nikbakht AM, Motevali A, Minaei S. 2014. Energy and exergy investigation of microwave assisted thin-layer drying of pomegranate arils using artificial neural networks and response surface methodology. Journal of the Saudi Society of Agricultural Sciences 13:81−91 doi: 10.1016/j.jssas.2013.01.005 |
[75] |
Motevali A, Minaei S, Khoshtaghaza MH, Kazemi M, Mohamad Nikbakht A. 2010. Drying of Pomegranate Arils: Comparison of Predictions from Mathematical Models and Neural Networks. International Journal of Food Engineering 6(3):1−12 doi: 10.2202/1556-3758.1889 |
[76] |
Wang X, Feng Y, Zhou C, Sun Y, Wu B, et al. 2019. Effect of vacuum and ethanol pretreatment on infrared-hot air drying of scallion (Allium fistulosum). Food Chemistry 295:432−40 doi: 10.1016/j.foodchem.2019.05.145 |
[77] |
da Cunha RMC, Brandão SCR, de Medeiros RAB, da Silva Júnior EV, Fernandes da Silva JH, et al. 2020. Effect of ethanol pretreatment on melon convective drying. Food Chemistry 333:127502 doi: 10.1016/j.foodchem.2020.127502 |
[78] |
Santos KC, Guedes JS, Rojas ML, Carvalho GR, Augusto PED. 2021. Enhancing carrot convective drying by combining ethanol and ultrasound as pre-treatments: Effect on product structure, quality, energy consumption, drying and rehydration kinetics. Ultrasonics Sonochemistry 70:105304 doi: 10.1016/j.ultsonch.2020.105304 |
[79] |
Erle U, Schubert H. 2001. Combined osmotic and microwave-vacuum dehydration of apples and strawberries. Journal of Food Engineering 49:193−99 doi: 10.1016/S0260-8774(00)00207-7 |
[80] |
Haneef N, Sohail A, Ahmad A, Asad MJ. 2022. Effects of edible aloe-pectin coating and hot-air drying on color, texture and microstructure of dried mango slices. The Journal of Animal and Plant Sciences 32:9 doi: 10.36899/japs.2022.1.0424 |
[81] |
Wu Y, Yao S, Narale BA, Shanmugam A, Mettu S, et al. 2022. Ultrasonic Processing of Food Waste to Generate Value-Added Products. Foods 11:2035 doi: 10.3390/foods11142035 |
[82] |
Allahdad Z, Nasiri M, Varidi M, Varidi MJ. 2019. Effect of sonication on osmotic dehydration and subsequent air-drying of pomegranate arils. Journal of Food Engineering 244:202−11 doi: 10.1016/j.jfoodeng.2018.09.017 |
[83] |
Penfield MP, Campbell AM. 1990. Meat. In Experimental Food Science, eds. Penfield MP, Campbell AM. 3rd Edition. San Diego: Academic Press. pp. 184−223. https://doi.org/10.1016/B978-0-12-157920-3.50013-2 |
[84] |
Amiali M, Briki S, Bechaa B, Zitouni B, Raghavan GSV. 2022. Pulsed electric field effect pretreatment on the behavior of microwave-assisted pomegranate arils (Punica granatum L.) hot air drying. Research Square Preprint doi: 10.21203/rs.3.rs-1574203/v1 |
[85] |
Kaveh M, Golpour I, Gonçalves JC, Ghafouri S, Guiné R. 2021. Determination of drying kinetics, specific energy consumption, shrinkage, and colour properties of pomegranate arils submitted to microwave and convective drying. Open Agriculture 6:230−42 doi: 10.1515/opag-2020-0209 |
[86] |
Schmilovitch Z, Sarig Y, Ronen B, Hoffman A, Egozi H, et al. 2006. Development of a method and a system for extracting the seeds (arils) from pomegranate fruits-from concept to commercial utilization. Acta Horticulturae 818:363−72 doi: 10.17660/ActaHortic.2009.818.53 |
[87] |
Schmilovitch Z, Sarig Y, Ronen B, Hoffman A, Egozi H, et al. 2009. Development of a method and a system for extracting the seeds (Arils) from pomegranate fruits - From concept to commercial utilization. Acta Horticulturae 818:363−72 doi: 10.17660/actahortic.2009.818.53 |
[88] |
Al-Kharabsheh S, Goswami DY. 2004. Solar Distillation and Drying. In Encyclopedia of Energy, ed. Cleveland CJ. New York: Elsevier. pp. 597−606. https://doi.org/10.1016/b0-12-176480-x/00319-3 |
[89] |
Venkatachalam SK, Thottipalayam Vellingri A, Selvaraj V. 2020. Low-temperature drying characteristics of mint leaves in a continuous-dehumidified air drying system. Journal of Food Process Engineering 43:e13384 doi: 10.1111/jfpe.13384 |
[90] |
Qu H, Masud MH, Islam M, Khan MIH, Ananno AA, et al. 2022. Sustainable food drying technologies based on renewable energy sources. Critical Reviews in Food Science and Nutrition 62:6872−86 doi: 10.1080/10408398.2021.1907529 |
[91] |
Gölükcü M. 2015. The effects of drying methods, packaging atmosphere and storage time on dried pomegranate aril quality. Tarım Bilimleri Dergisi 21:207 doi: 10.15832/tbd.06219 |
[92] |
Liu Y, Zhang Z, Hu L. 2022. High efficient freeze-drying technology in food industry. Critical Reviews in Food Science and Nutrition 62:3370−88 doi: 10.1080/10408398.2020.1865261 |
[93] |
Waghmare RB, Choudhary P, Moses JA, Anandharamakrishnan C, Stapley AGF. 2022. Trends in approaches to assist freeze-drying of food: A cohort study on innovations. Food Reviews International 38:552−73 doi: 10.1080/87559129.2021.1875232 |
[94] |
Adetoro AO, Opara UL, Fawole OA. 2020. Effect of hot-air and freeze-drying on the quality attributes of dried pomegranate (Punica granatum L.) arils during long-term cold storage of whole fruit. Agriculture 10:493 doi: 10.3390/agriculture10110493 |
[95] |
Al-Sanabani S, Youssef K, Shatta A, El-Samahy S. 2016. Impact of freezing and freeze-drying processes on color, phytochemical contents and antioxidant capacity of pomegranate seeds. Suez Canal University Journal of Food Sciences 3:27−38 doi: 10.21608/scuj.2016.6659 |
[96] |
Calín-Sanchez Á, Figiel A, Szarycz M, Lech K, Nuncio-Jáuregui N, et al. 2014. Drying kinetics and energy consumption in the dehydration of pomegranate (Punica granatum L.) arils and rind. Food and Bioprocess Technology 7:2071−83 doi: 10.1007/s11947-013-1222-5 |
[97] |
Ozay-Arancioglu I, Bekiroglu H, Karadag A, Saroglu O, Tekin-Çakmak ZH, et al. 2022. Effect of different drying methods on the bioactive, microstructural, and in-vitro bioaccessibility of bioactive compounds of the pomegranate arils. Food Science and Technology 42:e06221 doi: 10.1590/fst.06221 |
[98] |
Stratta L, Capozzi LC, Franzino S, Pisano R. 2020. Economic analysis of a freeze-drying cycle. Processes 8:1399 doi: 10.3390/pr8111399 |
[99] |
Başlar M, Karasu S, Kiliçli M, Us AA, Sağdiç O. 2014. Degradation kinetics of bioactive compounds and antioxidant activity of pomegranate arils during the drying process. International Journal of Food Engineering 10:839−48 doi: 10.1515/ijfe-2014-0080 |
[100] |
Sharma A, Thakur NS. 2016. Comparative studies on quality attributes of open sun and solar poly-tunnel dried wild pomegranate arils. International Journal of Bio-resource and Stress Management 7:136−41 doi: 10.23910/ijbsm/2016.7.1.1529 |
[101] |
El Broudi S, Zehhar N, Abdenouri N, Boussaid A, Hafidi A, et al. 2022. Investigation of drying kinetics and drying conditions on biochemical, sensory, and microstructural parameters of “Sefri” pomegranate arils (Punica granatum L. a Moroccan variety). Revista Mexicana de Ingeniería Química 21(3):Alim2813 doi: 10.24275/rmiq/Alim2813 |
[102] |
Thakur A, Thakur NS, Hamid, Chauhan M, Sharma C. 2020. Comparison of quality of anardana (dried arils) prepared in mechanical cabinet and solar tunnel drier from wild pomegranate (Punica granatum L.) fruits procured from different locations of Himachal Pradesh, India. Journal of Applied and Natural Science 12:71−78 doi: 10.31018/jans.vi.2247 |
[103] |
Briki S, Zitouni B, Bechaa B, Amiali M. 2019. Comparison of convective and infrared heating as means of drying pomegranate arils (Punica granatum L.). Heat and Mass Transfer 55:3189−99 doi: 10.1007/s00231-019-02644-8 |
[104] |
Horuz E, Maskan M. 2015. Hot air and microwave drying of pomegranate (Punica granatum L.) arils. Journal of Food Science and Technology 52:285−93 doi: 10.1007/s13197-013-1032-9 |
[105] |
Bhat MM, Thakur N, Jindal N. 2014. Studies on the effect of drying methods and packaging on quality and shelf life of dried wild pomegranate arils. Asian Journal of Dairying & Foods Research 33:18−24 doi: 10.5958/j.0976-0563.33.1.005 |
[106] |
Calín-Sánchez Á, Figiel A, Hernandez F, P. Melgarejo, Carbonell-Barrachina A. 2012. Convective and microwave drying influence on the chemical composition, functional properties and sensory quality of pomegranate arils and rind. Proc. II International Symposium on the Pomegranate, Madrid, Spain, 2012. pp. 255−59. http://om.ciheam.org/article.php?IDPDF=6964 |
[107] |
Nowak D, Jakubczyk E. 2020. The freeze-drying of foods-the characteristic of the process course and the effect of its parameters on the physical properties of food materials. Foods 9:1488 doi: 10.3390/foods9101488 |
[108] |
Zielinska M, Michalska A. 2016. Microwave-assisted drying of blueberry (Vaccinium corymbosum L.) fruits: Drying kinetics, polyphenols, anthocyanins, antioxidant capacity, colour and texture. Food Chemistry 212:671−80 doi: 10.1016/j.foodchem.2016.06.003 |
[109] |
Karasu S, Kilicli M, Baslar M, Arici M, Sagdic O, et al. 2015. Dehydration kinetics and changes of bioactive compounds of tulip and poppy petals as a natural colorant under vacuum and oven conditions. Journal of Food Processing and Preservation 39:2096−106 doi: 10.1111/jfpp.12453 |
[110] |
Ghandi A, Adhikari B, Powell IB. 2013. Powders containing microorganisms and enzymes. In Handbook of Food Powders, eds. Bhandari B, Bansal N, Zhang M, Schuck P. UK: Woodhead Publishing. pp. 593-624 https://doi.org/10.1533/9780857098672.3.593 |
[111] |
Mühlbauer W, Müller J. 2020. Drying Atlas: drying kinetics and quality of agricultural products. Duxford: Woodhead Publishing Duxford. https://doi.org/10.1016/C2018-0-02312-9 |
[112] |
Shimpy, Kumar M, Kumar A. 2022. Designs, performance and economic feasibility of domestic solar dryers. Food Engineering Reviews 15:156−86 doi: 10.1007/s12393-022-09323-1 |
[113] |
Udomkun P, Romuli S, Schock S, Mahayothee B, Sartas M, et al. 2020. Review of solar dryers for agricultural products in Asia and Africa: An innovation landscape approach. Journal of Environmental Management 268:110730 doi: 10.1016/j.jenvman.2020.110730 |
[114] |
Dincer I, Ozturk M. 2021. Energy, environment, and sustainable development. In Geothermal Energy Systems, eds. Dincer I, Ozturk M. Amsterdam: Elsevier. pp. 31−56. https://doi.org/10.1016/B978-0-12-820775-8.00005-2 |
[115] |
Shonte TT, Duodu KG, de Kock HL. 2020. Effect of drying methods on chemical composition and antioxidant activity of underutilized stinging nettle leaves. Heliyon 6:e03938 doi: 10.1016/j.heliyon.2020.e03938 |
[116] |
Süfer Ö, Palazoğlu TK. 2019. A study on hot-air drying of pomegranate. Journal of Thermal Analysis and Calorimetry 137:1981−90 doi: 10.1007/s10973-019-08102-1 |
[117] |
Maloney N, Harrison M. 2016. Advanced Heating Technologies for Food Processing. In Innovation and Future Trends in Food Manufacturing and Supply Chain Technologies, ed. Leadley CE. UK: Woodhead Publishing. pp. 203−56. https://doi.org/10.1016/b978-1-78242-447-5.00008-3 |
[118] |
Ozkan G, Guldiken B, Capanoglu E. 2019. Effect of Novel Food Processing Technologies on Beverage Antioxidants. In Processing and Sustainability of Beverages, eds. Grumezescu AM, Holban AM. UK: Woodhead Publishing. pp. 413−49. https://doi.org/10.1016/b978-0-12-815259-1.00012-4 |
[119] |
Hogervorst Cvejić J, Atanacković Krstonošić M, Bursać M, Miljić U. 2017. Polyphenols. In Nutraceutical and Functional Food Components, ed. Galanakis CM. Academic Press. pp. 203−58. https://doi.org/10.1016/b978-0-12-805257-0.00007-7 |
[120] |
Icier F. 2012. Ohmic Heating of Fluid Foods. In Novel Thermal and Non-Thermal Technologies for Fluid Foods, eds. Cullen PJ, Tiwari BK, Valdramidis VP. San Diego: Academic Press. pp. 305−67. https://doi.org/10.1016/b978-0-12-381470-8.00011-6 |
[121] |
Punathil L, Basak T. 2016. Microwave processing of frozen and packaged food materials: Experimental. In Reference Module in Food Science. Amsterdam: Elsevier. https://doi.org/10.1016/b978-0-08-100596-5.21009-3 |
[122] |
Cannon JR, Fenselau C. 2013. Asp-selective microwave-supported acid proteolysis. In Proteomic and Metabolomic Approaches to Biomarker Discovery, eds. Issaq HJ, Veenstra TD. Boston: Academic Press. pp. 225−36. https://doi.org/10.1016/b978-0-12-394446-7.00014-5 |
[123] |
Issa ZF, Miller JM, Zipes DP. 2012. Ablation energy sources. In Clinical Arrhythmology and Electrophysiology: A Companion to Braunwald's Heart Disease. 2nd Edition. Philadelphia: Saunders, Elsevier. pp. 206−37. https://doi.org/10.1016/b978-1-4557-1274-8.00007-5 |
[124] |
Nisoa M, Wattanasit K, Tamman A, Sirisathitkul Y, Sirisathitkul C. 2021. Microwave drying for production of rehydrated foods: A case study of stink bean (Parkia speciosa) seed. Applied Sciences 11:2918 doi: 10.3390/app11072918 |
[125] |
Dak M, Jain MK, Jat SL. 2014. Optimization of microwave-vacuum drying of pomegranate arils. Journal of Food Measurement and Characterization 8:398−411 doi: 10.1007/s11694-014-9205-4 |
[126] |
Gaukel V, Siebert T, Erle U. 2017. Microwave-assisted drying. In The Microwave Processing of Foods, eds. Regier M, Knoerzer K, Schubert H. 2nd Edition. UK: Woodhead Publishing. pp. 152−78. https://doi.org/10.1016/b978-0-08-100528-6.00008-5 |
[127] |
Alaei B, Amiri Chayjan R. 2015. Drying characteristics of pomegranate arils under near infrared-vacuum conditions. Journal of Food Processing and Preservation 39:469−79 doi: 10.1111/jfpp.12252 |
[128] |
Buzrul S. 2022. Reassessment of thin-layer drying models for foods: A critical short communication. Processes 10:118 doi: 10.3390/pr10010118 |
[129] |
Page GE. 1949. Factors Influencing the Maximum Rates of Air Drying Shelled corn in Thin Layers. Thesis. Purdue University, West Lafayette, Indiana. |
[130] |
O'Callaghan JR, Menzies DJ, Bailey PH. 1971. Digital simulation of agricultural drier performance. Journal of Agricultural Engineering Research 16:223−44 doi: 10.1016/S0021-8634(71)80016-1 |
[131] |
Westerman PW, White GM, Ross IJ. 1973. Relative humidity effect on the high-temperature drying of shelled corn. Transactions of the ASAE 16:1136−39 doi: 10.13031/2013.37715 |
[132] |
Midilli A, Kucuk H, Yapar Z. 2002. A new model for single-layer drying. Drying Technology 20:1503−13 doi: 10.1081/DRT-120005864 |
[133] |
Wang GY, Singh RP. 1978. A single layer drying equation for rough rice. ASAE paper, No. 78-3001. pp. 33. |
[134] |
Henderson SM. 1974. Progress in developing the thin layer drying equation. Transactions of the ASAE 17:1167−68 doi: 10.13031/2013.37052 |
[135] |
Yağcıoğlu A, Değirmencioğlu A, Çağatay F. 1999. Drying characteristics of laurel leaves under different drying conditions. 7th International Congress on Agricultural Mechanization and Enerdy. pp. 565−69. |
[136] |
Eissa ASI. 2021. Development and evaluation of pomegranate seeds drying unit using infrared / hot air dryer. Misr Journal of Agricultural Engineering 38:49−64 doi: 10.21608/mjae.2021.54351.1018 |
[137] |
Kingsly ARP, Singh DB. 2007. Drying kinetics of pomegranate arils. Journal of Food Engineering 79:741−44 doi: 10.1016/j.jfoodeng.2006.02.033 |
[138] |
Man CMD. 2015. Shelf life. West Sussex, England: John Wiley & Sons. https://doi.org/10.1002/9781118346235 |
[139] |
Saguy IS, Peleg M. 2009. Accelerated and Parallel Storage in Shelf Life Studies. In An integrated approach to new food product development, eds. Moskowitz HR, Saguy IS, Straus T. Boca Raton: CRC Press. pp. 429−55. https://doi.org/10.1201/9781420065558 |
[140] |
Singh RP. 1994. Scientific principles of shelf life evaluation. In Shelf Life Evaluation of Foods, eds. Man CMD, Jones AA. Boston, MA: Springer US. pp. 3−26. https://doi.org/10.1007/978-1-4615-2095-5_1 |
[141] |
Phimolsiripol Y, Suppakul P. 2016. Techniques in Shelf Life Evaluation of Food Products. In Reference Module in Food Science. Amsterdam: Elsevier. https://doi.org/10.1016/b978-0-08-100596-5.03293-5 |
[142] |
Calligaris S, Manzocco L, Lagazio C. 2012. Modeling shelf life using chemical, physical, and sensory indicators. In Shelf Life Assessment of Food, ed. Nicoli MC. Boca Raton: CRC Press. pp. 75−126. https://doi.org/10.1201/b11871 |
[143] |
Verduin J, Den Uijl MJ, Peters RJB, van Bommel MR. 2020. Photodegradation products and their analysis in food. Food Science and Nutrition 6 doi: 10.24966/fsn-1076/100067 |
[144] |
Thakur A, Thakur NS, Hamid, Kumar P, Bhatt K. 2020. Effect of packaging and storage on quality characteristics of dried wild pomegranate arils (Anardana) prepared in solar tunnel drier. Current Journal of Applied Science and Technology 39:8−23 doi: 10.9734/cjast/2020/v39i1330674 |