[1]

Franck N, Vaast P. 2009. Limitation of coffee leaf photosynthesis by stomatal conductance and light availability under different shade levels. Trees 23:761−69

doi: 10.1007/s00468-009-0318-z
[2]

Beer JW, Muschler RG, Somarriba E, Kass D. 1997. Shade management in coffee and cacao plantations. Agroforestry Systems 38:139−64

doi: 10.1023/A:1005956528316
[3]

International Coffee Council (ICO). 2015. Coffee in China. International Coffee Council, 115th Session, 28 Sept. ‒ 2 Oct. 2015, Milan, Italy. Milan, Italy: International Coffee Organization. www.ico.org/documents/cy2014-15/icc-115-7e-study-china.pdf

[4]

Ma GR, Liu HQ, Tian SM, Bai XH, Zhao MZ, et al. 2019. Soil nutrient status in coffee plantation of Yunnan and the main factors related to quality of green coffee beans. Journal of Plant Nutrition and Fertilizers 25(7):1222−29

doi: 10.11674/zwyf.18333
[5]

Lambers H, Oliveira RS. 2019. Photosynthesis, respiration, and long-distance transport: Photosynthesis. In Plant Physiological Ecology. Switzerland: Springer. pp. 11−114. https://doi.org/10.1007/978-3-030-29639-1_2

[6]

Herrmann HA, Schwartz JM, Johnson GN. 2020. From empirical to theoretical models of light response curves - linking photosynthetic and metabolic acclimation. Photosynthesis Research 145:5−14

doi: 10.1007/s11120-019-00681-2
[7]

Farquhar GD, von Caemmerer S, Berry JA. 1980. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78−90

doi: 10.1007/BF00386231
[8]

Wang Q, Chun AJ, Fleisher D, Reddy V, Timlin D, et al. 2017. Parameter estimation of the Farquhar — von Caemmerer — Berry biochemical model from photosynthetic carbon dioxide response curves. Sustainability 9:1288

doi: 10.3390/su9071288
[9]

Sun Y, Gu L, Dickinson RE, Pallardy SG, Baker J, et al. 2014. Asymmetrical effects of mesophyll conductance on fundamental photosynthetic parameters and their relationships estimated from leaf gas exchange measurements. Plant, Cell & Environment 37:978−94

doi: 10.1111/pce.12213
[10]

GU L, Pallardy SG, Tu K, Law BE, Wullschleger SD. 2010. Reliable estimation of biochemical parameters from C3 leaf photosynthesis-intercellular carbon dioxide response curves. Plant, Cell & Environment 33:1852−74

doi: 10.1111/j.1365-3040.2010.02192.x
[11]

Oguchi R, Onoda Y, Terashima I, Tholen D. 2018. Leaf anatomy and function. In The leaf: a platform for performing photosynthesis, ed. Adams III W, Terashima I. Switzerland: Springer Cham. pp. 97−139. https://doi.org/10.1007/978-3-319-93594-2_5

[12]

Tholen D, Boom C, Zhu XG. 2012. Opinion: prospects for improving photosynthesis by altering leaf anatomy. Plant Science 197:92−101

doi: 10.1016/j.plantsci.2012.09.005
[13]

Akhkha A, Reid I, Clarke DD, Dominy P. 2001. Photosynthetic light response curves determined with the leaf oxygen electrode: minimisation of errors and significance of the convexity term. Planta 214:135−41

doi: 10.1007/s004250100599
[14]

Bolhàr-Nordenkampf HR, Draxler G. 1993. Functional leaf anatomy. In Photosynthesis and production in a changing environment, eds. Hall DO, Scurlock JMO, Bolhàr-Nordenkampf HR, Leegood RC, Long SP. Netherlands: Springer Dordrecht. pp. 91−112. https://doi.org/10.1007/978-94-011-1566-7_7

[15]

James SA, Bell DT. 2001. Leaf morphological and anatomical characteristics of heteroblastic Eucalyptus globulus ssp. globulus (Myrtaceae). Australian Journal of Botany 49:259−69

doi: 10.1071/BT99044
[16]

Vogelman TC, Nishio JN, Smith WK. 1996. Leaves and light capture: light propagation and gradients of carbon fixation within leaves. Trends in Plant Science 1:65−70

doi: 10.1016/S1360-1385(96)80031-8
[17]

Niinemets Ü. 1999. Components of leaf dry mass per area – thickness and density – alter leaf photosynthetic capacity in reverse directions in woody plants. New Phytologist 144:35−47

doi: 10.1046/j.1469-8137.1999.00466.x
[18]

Battie-Laclau P, Laclau JP, Beri C, Mietton L, Muniz MRA, et al. 2014. Photosynthetic and anatomical responses of Eucalyptus grandis leaves to potassium and sodium supply in a field experiment. Plant, Cell & Environment 37:70−81

doi: 10.1111/pce.12131
[19]

Batos B, Vilotić D, Orlović S, Miljković D. 2010. Inter and intra-population variation of leaf stomatal traits of quercus robur l In northern serbia. Archives of Biological Sciences 2010,62(4):1125−36

doi: 10.2298/abs1004125b
[20]

Ye ZP, Yu Q. 2008. Comparison of new and several classical models of photosynthesis in response to irradiance. Journal of Plant Ecology (Chinese Version) 32(6):1356−61

[21]

Ye ZP. 2010. A review on modeling of responses of photosynthesis to light and CO2. Chinese Journal of Plant Ecology 34:727−40

[22]

Ye ZP. 2007. A new model for relationship between irradiance and the rate of photosynthesis in Oryza sativa. Photosynthetica 45:637−40

doi: 10.1007/s11099-007-0110-5
[23]

Dewey DR, Lu KH. 1959. A correlation and path-coefficient analysis of components of crested wheatgrass seed production 1. Agronomy Journal 51:515−18

doi: 10.2134/agronj1959.00021962005100090002x
[24]

Diakoulaki D, Mavrotas G, Papayannakis L. 1995. Determining objective weights in multiple criteria problems: The critic method. Computers & Operations Research 22:763−70

doi: 10.1016/0305-0548(94)00059-H
[25]

Gu L, Sun Y. 2014. Artefactual responses of mesophyll conductance to CO2 and irradiance estimated with the variable J and online isotope discrimination methods. Plant Cell & Environment 37:1231−49

doi: 10.1111/pce.12232
[26]

Kumar D, Tieszen LL. 1980. Photosynthesis in Coffea arabica I. Effects of light and temperature. Experimental Agriculture 16:13−19

doi: 10.1017/s0014479700010656
[27]

DaMatta FM. 2004. Ecophysiological constraints on the production of shaded and unshaded coffee: a review. Field Crops Research 86:99−114

doi: 10.1016/j.fcr.2003.09.001
[28]

DaMatta FM, Ramalho JDC. 2006. Impacts of drought and temperature stress on coffee physiology and production: a review. Brazilian Journal of Plant Physiology 18:55−81

doi: 10.1590/S1677-04202006000100006
[29]

Ayalew B. 2018. Impact of shade on morpho-physiological characteristics of coffee plants, their pests and diseases: A review. African Journal of Agricultural Research 13:2016−24

doi: 10.5897/AJAR2018.13408
[30]

Taiz L, Zeige E. 2006. Photosynthesis: Physiological and ecological considerations. In Plant Physiology. Sunderland Massachusetts: Sinauer Associates, Inc. pp. 179−80.

[31]

Cannell MGR. 1985. Physiology of the coffee crop. In Coffee, eds. Clifford MN, Willson KC. Boston, MA: Springer. pp. 108−34. https://doi.org/10.1007/978-1-4615-6657-1_5

[32]

Bote AD, Zana Z, Ocho FL, Vos J. 2018. Analysis of coffee (Coffea arabica L.) performance in relation to radiation level and rate of nitrogen supply II. Uptake and distribution of nitrogen, leaf photosynthesis and first bean yields. European Journal of Agronomy 92:107−14

doi: 10.1016/j.eja.2017.10.006
[33]

Martins SCV, Galmés J, Cavatte PC, Pereira LF, Ventrella MC, et al. 2014. Understanding the low photosynthetic rates of sun and shade coffee leaves: bridging the gap on the relative roles of hydraulic, diffusive and biochemical constraints to photosynthesis. PLoS ONE 9:e95571

doi: 10.1371/journal.pone.0095571
[34]

De Oliveira TB, Peixoto LA, Teodoro PE, De Alvarenga AA, Bhering LL, et al. 2018. Relationship between biochemical and photosynthetic traits with Asian soybean rust. Annals of the Brazilian Academy of Sciences 90:3925−40

doi: 10.1590/0001-3765201820170795
[35]

Grassi G, Magnani F. 2005. Stomatal, mesophyll conductance and biochemical limitations to photosynthesis as affected by drought and leaf ontogeny in ash and oak trees. Plant, Cell & Environment 28:834−49

doi: 10.1111/j.1365-3040.2005.01333.x
[36]

DaMatta FM, Ronchi CP, Maestri M, Barros RS. 2007. Ecophysiology of coffee growth and production. Brazilian Journal of Plant Physiology 19:485−510

doi: 10.1590/S1677-04202007000400014
[37]

Rodrigues WP, Silva JR, Ferreira LS, Machado Filho JA, Figueiredo FA, et al. 2018. Stomatal and photochemical limitations of photosynthesis in coffee (Coffea spp.) plants subjected to elevated temperatures. Crop and Pasture Science 69:317−25

doi: 10.1071/cp17044
[38]

Yin Q, Tian T, Kou M, Liu P, Wang L, et al. 2020. The relationships between photosynthesis and stomatal traits on the Loess Plateau. Global Ecology and Conservation 23:e01146

doi: 10.1016/j.gecco.2020.e01146
[39]

Sakoda K, Yamori W, Shimada T, Sugano SS, Hara-Nishimura I, et al. 2020. Higher stomatal density improves photosynthetic induction and biomass production in Arabidopsis under fluctuating light. Frontiers in Plant Science 11:589603

doi: 10.3389/fpls.2020.589603
[40]

Smith WK, Vogelmann TC, DeLucia EH, Bell DT, Shepherd KA. 1997. Leaf form and photosynthesis. BioScience 47:785−93

doi: 10.2307/1313100
[41]

Niinemets Ü, Sack L. 2006. Structural determinants of leaf light-harvesting capacity and photosynthetic potentials. In Progress in Botany, eds. Esser K, Lüttge U, Beyschlag W, Murata J. vol. 67 Berlin, Heidelberg: Springer. pp. 385−419. https://doi.org/10.1007/3-540-27998-9_17

[42]

Terashima I, Hanba YT, Tholen D, Niinemets Ü. 2011. Leaf functional anatomy in relation to photosynthesis. Plant Physiology 155:108−16

doi: 10.1104/pp.110.165472
[43]

Lee DW, Graham R. 1986. Leaf optical properties of rainforest sun and extreme shade plants. American Journal of Botany 73:1100−8

doi: 10.1002/j.1537-2197.1986.tb08557.x
[44]

Miranda V, Baker NR, Long SP. 1981. Anatomical variation along the length of the Zea mays leaf in relation to photosynthesis. New Phytologist 88:595−605

doi: 10.1111/j.1469-8137.1981.tb01735.x
[45]

Jackson D, Skillman J, Vandermeer J. 2012. Indirect biological control of the coffee leaf rust, Hemileia vastatrix, by the entomogenous fungus Lecanicillium lecanii in a complex coffee agroecosystem. Biological Control 61:89−97

doi: 10.1016/j.biocontrol.2012.01.004
[46]

Vogelmann TC, Bornman JF, Yates DJ. 1996. Focusing of light by leaf epidermal cells. Physiologia Plantarum 98:43−56

doi: 10.1111/j.1399-3054.1996.tb00674.x
[47]

Brodersen CR, Vogelmann TC. 2007. Do epidermal lens cells facilitate the absorptance of diffuse light? American Journal of Botany 94:1061−66

doi: 10.3732/ajb.94.7.1061
[48]

Vogelmann TC, Martin G. 1993. The functional significance of palisade tissue: penetration of directional versus diffuse light. Plant, Cell & Environment 16:65−72

doi: 10.1111/j.1365-3040.1993.tb00845.x
[49]

Terashima I, Inoue Y. 1985. Palisade tissue chloroplasts and spongy tissue chloroplasts in spinach: biochemical and ultrastructural differences. Plant and Cell Physiology 26:63−75

doi: 10.1093/oxfordjournals.pcp.a076896
[50]

Gotoh E, Suetsugu N, Higa T, Matsushita T, Tsukaya H, Wada M. 2018. Palisade cell shape affects the light-induced chloroplast movements and leaf photosynthesis. Scientific Reports 8:1472

doi: 10.1038/s41598-018-19896-9
[51]

Nunes M, Bierhuizen J, Ploegman C. 1968. Studies on productivity of coffee: I. Effect of light, temperature and CO2 concentration on photosynthesis of Coffea arabica. Acta botanica neerlandica 17:93−102

doi: 10.1111/j.1438-8677.1968.tb00109.x
[52]

Khairi MMA, Hall AE. 1976. Comparative Studies of Net Photosynthesis and Transpiration of Some Citrus Species and Relatives. Physiologia plantarum 36:35−39

doi: 10.1111/j.1399-3054.1976.tb05024.x
[53]

Evans JR, Caemmerer SV, Setchell BA, Hudson GS. 1994. The relationship between CO2 transfer conductance and leaf anatomy in transgenic tobacco with a reduced content of Rubisco. Functional Plant Biology 21:475−95

doi: 10.1071/PP9940475
[54]

Bondada BR, Oosterhuis DM, Wullschleger SD, Kim KS, Harris WM. 1994. Anatomical considerations related to photosynthesis in cotton (Gossypium hirsutum L.) leaves, bracts, and the capsule wall. Journal of Experimental Botany 45:111−18

doi: 10.1093/jxb/45.1.111
[55]

Araujo WL, Dias PC, Moraes GABK, Celin EF, Cunha RL, et al. 2008. Limitations to photosynthesis in coffee leaves from different canopy positions. Plant Physiology and Biochemistry 46:884−90

doi: 10.1016/j.plaphy.2008.05.005
[56]

Pompelli MF, Martins SCV, Celin EF, Ventrella MC, Damatta FM. 2010. What is the influence of ordinary epidermal cells and stomata on the leaf plasticity of coffee plants grown under full-sun and shady conditions? Brazilian Journal of Biology 70:1083−88

doi: 10.1590/s1519-69842010000500025