[1] |
Šafranko S, Živković P, Stanković A, Medvidović-Kosanović M, Széchenyi A, et al. 2019. Designing ColorX, image processing software for colorimetric determination of concentration, to facilitate students' investigation of analytical chemistry concepts using digital imaging technology. Journal of Chemical Education 96:1928−37 doi: 10.1021/acs.jchemed.8b00920 |
[2] |
Al-Tamrah SA, Abdalla MA, Al-Otibi AA. 2019. Spectrophotometric determination of norfloxacin using bromophenol blue. Arabian Journal of Chemistry 12:3993−97 doi: 10.1016/j.arabjc.2015.02.005 |
[3] |
Ren K, Liang Q, Mu X, Luo G, Wang Y. 2009. Miniaturized high throughput detection system for capillary array electrophoresis on chip with integrated light emitting diode array as addressed ring-shaped light source. Lab on a Chip 9:733−36 doi: 10.1039/B810705J |
[4] |
Yao B, Luo G, Wang L, Gao Y, Lei G, et al. 2005. A microfluidic device using a green organic light emitting diode as an integrated excitation source. Lab on a Chip 5:1041−47 doi: 10.1039/b504959h |
[5] |
Barzallo D, Danchana K, Cerdà V, Palacio E. 2020. Design of an automatic spectrofluorometric system Part III: Fluorometric system using a CCD detector. Talanta 218:121163 doi: 10.1016/j.talanta.2020.121163 |
[6] |
Barzallo D, Benavides J, Cerdà V, Palacio E. 2023. Multifunctional Portable System Based on Digital Images for In-Situ Detecting of Environmental and Food Samples. Molecules 28:2465 doi: 10.3390/molecules28062465 |
[7] |
Firdaus ML, Alwi W, Trinoveldi F, Rahayu I, Rahmidar L, et al. 2014. Determination of Chromium and Iron Using Digital Image-based Colorimetry. Procedia Environmental Sciences 20:298−304 doi: 10.1016/j.proenv.2014.03.037 |
[8] |
Danchana K, Cerdà V. 2020. Design of a portable spectrophotometric system Part II: Using a digital microscope as detector. Talanta 216:120977 doi: 10.1016/j.talanta.2020.120977 |
[9] |
Phansi P, Tumma P, Thuankhunthod C, Danchana K, Cerdà V. 2021. Development of a digital microscope spectrophotometric system for determination of the antioxidant activity and total phenolic content in teas. Analytical Letters 54:2727−35 doi: 10.1080/00032719.2021.1886304 |
[10] |
da Silva EKN, dos Santos VB, Resque IS, Neves CA, Moreira SGC, et a. 2020. A fluorescence digital image-based method using a 3D-printed platform and a UV-LED chamber made of polyacid lactic for quinine quantification in beverages. Microchemical Journal 157:104986 doi: 10.1016/j.microc.2020.104986 |
[11] |
Helfer GA, Böck FC, Marder L, Furtado JC, Costa A, et al. 2015. Chemostat: Free software for exploratory multivariate data analysis. Química nova 38:575−79 doi: 10.5935/0100-4042.20150063 |
[12] |
Hossain MA, Canning J, Cook K, Jamalipour A. 2016. Optical fiber smartphone spectrometer. Optics Letters 41:2237−40 doi: 10.1364/OL.41.002237 |
[13] |
Grasse EK, Torcasio MH, Smith AW. 2016. Teaching UV–Vis Spectroscopy with a 3D-Printable Smartphone Spectrophotometer. Journal of Chemical Education 93:146−51 doi: 10.1021/acs.jchemed.5b00654 |
[14] |
Zangheri M, Cevenini L, Anfossi L, Baggiani C, Simoni P, et al. 2015. A simple and compact smartphone accessory for quantitative chemiluminescence-based lateral flow immunoassay for salivary cortisol detection. Biosensors and Bioelectronics 64:63−68 doi: 10.1016/j.bios.2014.08.048 |
[15] |
Bueno D, Muñoz R, Marty JL. 2016. Fluorescence analyzer based on smartphone camera and wireless for detection of Ochratoxin A. Sensors and Actuators B:Chemical 232:462−68 doi: 10.1016/j.snb.2016.03.140 |