[1] |
Moraes ASP, Carvalho MAF, Boldt RS, Ferreira FBN, Duarte FM, et al. 2021. Ergonomics of Firefighting Protective Clothing: A Short Review on Fit and Sizing Issues. Human Systems Engineering and Design III: Proceedings of the 3rd International Conference on Human Systems Engineering and Design (IHSED2020): Future Trends and Applications, Juraj Dobrila University of Pula, Croatia, September 22−24, 2020. Pula, Croatia: Springer Science and Business Media Deutschland GmbH. pp. 301–7. https://doi.org/10.1007/978-3-030-58282-1_48 |
[2] |
Campbell R. 2022. Firefighter injuries on the fireground. Research report. National Fire Protection Association, USA. |
[3] |
Lesniak AY, Bergstrom HC, Clasey JL, Stromberg AJ, Abel MG. 2020. The effect of personal protective equipment on firefighter occupational performance. The Journal of Strength & Conditioning Research 34(8):2165−72 doi: 10.13023/ETD.2017.453 |
[4] |
Angus B, Scherer M. 2023. Five principles of industrial hygiene. Recycling Today. www.recyclingtoday.com/article/5-principles-of-industrial-hygiene-recycling-facilities/ |
[5] |
Morae AS, Carvalho MA, Boldt RS, Ferreira FB, Griffin L, et al. 2020. Assessment of Portuguese firefighters' needs: Preliminary results of a pilot study. In Advances in Ergonomics in Design: Proceedings of the AHFE 2019 International Conference on Ergonomics in Design, eds. Rebelo F, Soares M. Washington DC, USA: Springer International Publishing. pp. 721–32. https://doi.org/10.1007/978-3-030-20227-9_69. |
[6] |
Barker J, Boorady LM, Lee YA, Lin SH, Cho E, et al. 2013. Exploration of firefighter turnout gear Part 1: Identifying male firefighter user needs. Journal of Textile and Apparel, Technology and Management 8(1):1−13 |
[7] |
Park H, Park J, Lin SH, Boorady LM. 2014. Assessment of Firefighters' needs for personal protective equipment. Fashion and Textiles 1(1):8 doi: 10.1186/s40691-014-0008-3 |
[8] |
Daniels RD, Kubale TL, Yiin JH, Dahm MM, Hales TR, et al. 2014. Mortality and cancer incidence in a pooled cohort of US firefighters from San Francisco, Chicago and Philadelphia (1950–2009). Occupational and Environmental Medicine 71(6):388−97 doi: 10.1136/oemed-2013-101662 |
[9] |
Lee DJ, Koru-Sengul T, Hernandez MN, Caban-Martinez AJ, McClure LA, et al. 2020. Cancer risk among career male and female Florida firefighters: Evidence from the Florida Firefighter Cancer Registry (1981−2014). American Journal of Industrial Medicine 63(4):285−99 doi: 10.1002/ajim.23086 |
[10] |
LeMasters GK, Genaidy AM, Succop P, Deddens J, Sobeih T, et al. 2006. Cancer risk among firefighters: a review and meta-analysis of 32 studies. Journal of Occupational and Environmental Medicine 48(11):1189−202 doi: 10.1097/01.jom.0000246229.68697.90 |
[11] |
Ma F, Fleming LE, Lee DJ, Trapido E, Gerace TA, et al. 2005. Mortality in Florida professional firefighters, 1972 to 1999. American Journal of Industrial Medicine 47(6):509−17 doi: 10.1002/ajim.20160 |
[12] |
Demers PA, DeMarini DM, Fent KW, Glass DC, Hansen J, et al. 2022. Carcinogenicity of occupational exposure as a firefighter. The Lancet Oncology 23(8):985−86 doi: 10.1016/S1470-2045(22)00390-4 |
[13] |
Fahy RF, Petrillo JT. 2022. NFPA's firefighter fatalities in the US in 2021. Quincy: National Fire Protection Association Research. |
[14] |
Coca A, Williams WJ, Roberge RJ, Powell JB. 2010. Effects of fire fighter protective ensembles on mobility and performance. Applied Ergonomics 41(4):636−41 doi: 10.1016/j.apergo.2010.01.001 |
[15] |
Coca A, Roberge R, Shepherd A, Powell JB, Stull JO, et al. 2008. Ergonomic comparison of a chem/bio prototype firefighter ensemble and a standard ensemble. European Journal of Applied Physiology 104:351−59 doi: 10.1007/s00421-007-0644-z |
[16] |
McQuerry M. 2020. Effect of structural turnout suit fit on female versus male firefighter range of motion. Applied Ergonomics 82:102974 doi: 10.1016/j.apergo.2019.102974 |
[17] |
Ciesielska-Wróbel I, DenHartog E, Barker R. 2017. Measuring the effects of structural turnout suits on firefighter range of motion and comfort. Ergonomics 60(7):997−1007 doi: 10.1080/00140139.2016.1229044 |
[18] |
Park H, Trejo H, Miles M, Bauer A, Kim S, et al. 2015. Impact of firefighter gear on lower body range of motion. International Journal of Clothing Science and Technology 27(2):315−34 doi: 10.1108/IJCST-01-2014-0011 |
[19] |
Havenith G, Heus R. 2004. A test battery related to ergonomics of protective clothing. Applied Ergonomics 35(1):3−20 doi: 10.1016/j.apergo.2003.11.001 |
[20] |
Son SY, Lee JY, Tochihara Y. 2013. Occupational stress and strain in relation to personal protective equipment of Japanese firefighters assessed by a questionnaire. Industrial Health 51(2):214−22 doi: 10.2486/indhealth.2012-0075 |
[21] |
Basodan RAM, Park B, Chung HJ. 2021. Smart personal protective equipment (PPE): Current PPE needs, opportunities for nanotechnology and e-textiles. Flexible and Printed Electronics 6(4):043004 doi: 10.1088/2058-8585/ac32a9 |
[22] |
Lee JY, Park J, Park H, Coca A, Kim JH, et al. 2015. What do firefighters desire from the next generation of personal protective equipment? Outcomes from an international survey Industrial Health 53(5):434−444 doi: 10.2486/indhealth.2015-0033 |
[23] |
McQuerry M, Easter E. 2022. Wildland firefighting personal protective clothing cleaning practices in the United States. Fire Technology 58(3):1667−88 doi: 10.1007/s10694-021-01212-z |
[24] |
McQuerry M, Riedy R, Garringer B. 2018. Evaluation of the performance of station wear worn under a NFPA 1971 structural fire fighter protective ensemble. Technical Report. FPRF-2018-07. Florida State University, USA. |
[25] |
Huang D, Yang H, Qi Z, Xu L, Cheng X, et al. 2012. Questionnaire on firefighters' protective clothing in China. Fire Technology 48:255−68 doi: 10.1007/s10694-011-0214-0 |
[26] |
Spiggle S. 1994. Analysis and interpretation of qualitative data in consumer research. Journal of Consumer Research 21(3):491−503 doi: 10.1086/209413 |
[27] |
Annex B. 2018. NFPA 1971 standard on protective ensembles for structural fire fighting and proximity fire fighting. Comment Report. National Fire Protection Association, USA. |
[28] |
Boorady LM, Barker J, Lin SH, Lee YA, Cho E, et al. 2013. Exploration of firefighter bunker gear part 2: assessing the needs of the female firefighter. Journal of Textile and Apparel, Technology and Management 8(2):1−12 |
[29] |
McQuerry M, Kwon C. 2023. Personal protective clothing inequities for female structural and wildland firefighters. Trade magazine PPE supplement magazine. Fire Engineering magazine pp. 16–17. |
[30] |
McQuerry M, Kwon C, Poley-Bogan M. 2023. Female firefighters' increased risk of occupational exposure due to ill-fitting personal protective clothing. Frontiers in Materials 10:1175559 doi: 10.3389/fmats.2023.1175559 |
[31] |
NFPA N. 1851. Standard on selection, care, and maintenance of protective ensembles for structural fire fighting and proximity fire fighting. NFPA National Fire Codes Online, Quincy, MA, USA. |
[32] |
Day S, Jahnke S, Oates J. Nerdstock Unplugged - Risk Factors with Susie Day & Sara Jahnke. The Science Alliance, USA. |
[33] |
Wilkinson ML, Brown AL, Poston WSC, Haddock CK, Jahnke SA, et al. 2014. Physician weight recommendations for overweight and obese firefighters, United States, 2011–2012. Preventing Chronic Disease 11:1−9 |
[34] |
McQuerry M, DenHartog E, Barker R. 2017. Effect of self-contained breathing apparatus (SCBA) on heat loss in structural firefighter turnout suits. AATCC Journal of Research 4(5):1−5 doi: 10.14504/ajr.4.5.1 |
[35] |
McQuerry M, Den Hartog E, Barker R, Ross K. 2016. A review of garment ventilation strategies for structural firefighter protective clothing. Textile Research Journal 86(7):727−42 doi: 10.1177/0040517515595029 |
[36] |
McQuerry M, DenHartog E, Barker R. 2016. Garment ventilation strategies for improving heat loss in structural firefighter clothing ensembles. AATCC Journal of Research 3(3):9−14 doi: 10.14504/ajr.3.3.2 |
[37] |
Murphy J. 2003. Pregnancy and risks associated with firefighting. Central Pierce Fire & Rescue. https://womeninfire.org/wp-content/uploads/2014/04/Resource-Docs-Pregnancy-and-Risks-Central-Pierce.pdf |
[38] |
McQuerry M, DenHartog E, Barker R. 2018. Analysis of air gap volume in structural firefighter turnout suit constructions in relation to heat loss. Textile Research Journal 88(21):2475−84 doi: 10.1177/0040517517723024 |
[39] |
International Organization for Standardization. 2023. ISO/TS 20141: 2022 Personal safety — Personal protective equipment — Guidelines on compatibility testing of PPE. Geneva, Switzerland. www.iso.org/standard/77758.html |