[1]

Schaum N, Karkanias J, Neff NF, May AP, Quake SR, et al. 2018. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature 562:367−72

doi: 10.1038/s41586-018-0590-4
[2]

Han L, Wei X, Liu C, Volpe G, Zhuang Z, et al. 2022. Cell transcriptomic atlas of the non-human primate Macaca fascicularis. Nature 604:723−31

doi: 10.1038/s41586-022-04587-3
[3]

Li H, Janssens J, De Waegeneer M, Kolluru SS, Davie K, et al. 2022. Fly Cell Atlas: a single-nucleus transcriptomic atlas of the adult fruit fly. Science 375:eabk2432

doi: 10.1126/science.abk2432
[4]

Wei H. 2021. Inaugural editorial. Forestry Research 1:1

doi: 10.48130/fr-2021-0001
[5]

Li H, Yin S, Wang L, Xu N, Liu L. 2022. Transcription factor PagLBD21 functions as a repressor of secondary xylem development in Populus. Forestry Research 2:19

doi: 10.48130/fr-2022-0019
[6]

Takata N, Awano T, Nakata MT, Sano Y, Sakamoto S, et al. 2019. Populus NST/SND orthologs are key regulators of secondary cell wall formation in wood fibers, phloem fibers and xylem ray parenchyma cells. Tree Physiology 39:514−25

doi: 10.1093/treephys/tpz004
[7]

Tang X, Wang C, Chai G, Wang D, Xu H, et al. 2022. Ubiquitinated DA1 negatively regulates vascular cambium activity through modulating the stability of WOX4 in Populus. The Plant Cell 34:3364−82

doi: 10.1093/plcell/koac178
[8]

Hu J, Su H, Cao H, Wei H, Fu X, et al. 2022. AUXIN RESPONSE FACTOR7 integrates gibberellin and auxin signaling via interactions between DELLA and AUX/IAA proteins to regulate cambial activity in poplar. The Plant Cell 34:2688−707

doi: 10.1093/plcell/koac107
[9]

Dai X, Zhai R, Lin J, Wang Z, Meng D, et al. 2023. Cell-type-specific PtrWOX4a and PtrVCS2 form a regulatory nexus with a histone modification system for stem cambium development in Populus trichocarpa. Nature Plants 9:96−111

doi: 10.1038/s41477-022-01315-7
[10]

Tong S, Wang Y, Chen N, Wang D, Liu B, et al. 2022. PtoNF-YC9-SRMT-PtoRD26 module regulates the high saline tolerance of a triploid poplar. Genome Biology 23:148

doi: 10.1186/s13059-022-02718-7
[11]

Jiang Y, Tong S, Chen N, Liu B, Bai Q, et al. 2021. The PalWRKY77 transcription factor negatively regulates salt tolerance and abscisic acid signaling in Populus. The Plant Journal 105:1258−73

doi: 10.1111/tpj.15109
[12]

Kong L, Song Q, Wei H, Wang Y, Lin M, et al. 2023. The AP2/ERF transcription factor PtoERF15 confers drought tolerance via JA-mediated signaling in Populus. New Phytologist 240:1848−67

doi: 10.1111/nph.19251
[13]

Tong S, Chen N, Wang D, Ai F, Liu B, et al. 2021. The U-box E3 ubiquitin ligase PalPUB79 positively regulates ABA-dependent drought tolerance via ubiquitination of PalWRKY77 in Populus. Plant Biotechnology Journal 19:2561−75

doi: 10.1111/pbi.13681
[14]

Tylewicz S, Petterle A, Marttila S, Miskolczi P, Azeez A, et al. 2018. Photoperiodic control of seasonal growth is mediated by ABA acting on cell-cell communication. Science 360:212−15

doi: 10.1126/science.aan8576
[15]

Azeez A, Zhao YC, Singh RK, Yordanov YS, Dash M, et al. 2021. EARLY BUD-BREAK 1 and EARLY BUD-BREAK 3 control resumption of poplar growth after winter dormancy. Nature Communications 12:1123

doi: 10.1038/s41467-021-21449-0
[16]

Singh RK, Svystun T, Aldahmash B, Jönsson AM, Bhalerao RP. 2017. Photoperiod- and temperature-mediated control of phenology in trees – a molecular perspective. New Phytologist 213:511−24

doi: 10.1111/nph.14346
[17]

Ding J, Böhlenius H, Rühl MG, Chen P, Sane S, et al. 2018. GIGANTEA-like genes control seasonal growth cessation in Populus. New Phytologist 218:1491−503

doi: 10.1111/nph.15087
[18]

Li Y, Wang D, Wang W, Yang W, Gao J, et al. 2023. A chromosome-level Populus qiongdaoensis genome assembly provides insights into tropical adaptation and a cryptic turnover of sex determination. Molecular Ecology 32:1366−80

doi: 10.1111/mec.16566
[19]

Yang W, Wang D, Li Y, Zhang Z, Tong S, et al. 2021. A general model to explain repeated turnovers of sex determination in the Salicaceae. Molecular Biology and Evolution 38:968−80

doi: 10.1093/molbev/msaa261
[20]

Xue L, Wu H, Chen Y, Li X, Hou J, et al. 2020. Evidences for a role of two Y-specific genes in sex determination in Populus deltoides. Nature Communications 11:5893

doi: 10.1038/s41467-020-19559-2
[21]

Zhou R, Macaya-Sanz D, Carlson CH, Schmutz J, Jenkins JW, et al. 2020. A willow sex chromosome reveals convergent evolution of complex palindromic repeats. Genome Biology 21:38

doi: 10.1186/s13059-020-1952-4
[22]

Efroni I, Mello A, Nawy T, Ip PL, Rahni R, et al. 2016. Root regeneration triggers an embryo-like sequence guided by hormonal interactions. Cell 165:1721−33

doi: 10.1016/j.cell.2016.04.046
[23]

Denyer T, Ma X, Klesen S, Scacchi E, Nieselt K, et al. 2019. Spatiotemporal developmental trajectories in the Arabidopsis root revealed using high-throughput single-cell RNA sequencing. Developmental Cell 48:840−52

doi: 10.1016/j.devcel.2019.02.022
[24]

Jean-Baptiste K, Mcfaline-Figueroa JL, Alexandre CM, Dorrity MW, Saunders L, et al. 2019. Dynamics of gene expression in single root cells of Arabidopsis thaliana. The Plant Cell 31:993−1011

doi: 10.1105/tpc.18.00785
[25]

Ryu KH, Huang L, Kang HM, Schiefelbein J. 2019. Single-cell RNA sequencing resolves molecular relationships among individual plant cells. Plant Physiology 179:1444−56

doi: 10.1104/pp.18.01482
[26]

Zhang T, Xu Z, Shang G, Wang J. 2019. A single-cell RNA sequencing profiles the developmental landscape of Arabidopsis root. Molecular Plant 12:648−60

doi: 10.1016/j.molp.2019.04.004
[27]

Turco GM, Rodriguez-Medina J, Siebert S, Han D, Valderrama-Gómez MÁ, et al. 2019. Molecular mechanisms driving switch behavior in xylem cell differentiation. Cell Reports 28:342−351.E4

doi: 10.1016/j.celrep.2019.06.041
[28]

Liu Z, Zhou Y, Guo J, Li J, Tian Z, et al. 2020. Global dynamic molecular profiling of stomatal lineage cell development by single-cell RNA sequencing. Molecular Plant 13:1178−93

doi: 10.1016/j.molp.2020.06.010
[29]

Zhang T, Chen Y, Wang J. 2021. A single-cell analysis of the Arabidopsis vegetative shoot apex. Developmental Cell 56:1056−1074.E8

doi: 10.1016/j.devcel.2021.02.021
[30]

Zhai N, Xu L. 2021. Pluripotency acquisition in the middle cell layer of callus is required for organ regeneration. Nature Plants 7:1453−60

doi: 10.1038/s41477-021-01015-8
[31]

Liu Z, Wang J, Zhou Y, Zhang Y, Qin A, et al. 2022. Identification of novel regulators required for early development of vein pattern in the cotyledons by single-cell RNA-sequencing. The Plant Journal 110:7−22

doi: 10.1111/tpj.15719
[32]

Wang Y, Huan Q, Li K, Qian W. 2021. Single-cell transcriptome atlas of the leaf and root of rice seedlings. Journal of Genetics and Genomics 48:881−98

doi: 10.1016/j.jgg.2021.06.001
[33]

Liu Q, Liang Z, Feng D, Jiang S, Wang Y, et al. 2021. Transcriptional landscape of rice roots at the single-cell resolution. Molecular Plant 14:384−94

doi: 10.1016/j.molp.2020.12.014
[34]

Zong J, Wang L, Zhu L, Bian L, Zhang B, et al. 2022. A rice single cell transcriptomic atlas defines the developmental trajectories of rice floret and inflorescence meristems. New Phytologist 234:494−512

doi: 10.1111/nph.18008
[35]

Ortiz-Ramírez C, Guillotin B, Xu X, Rahni R, Zhang S, et al. 2021. Ground tissue circuitry regulates organ complexity in maize and Setaria. Science 374:1247−52

doi: 10.1126/science.abj2327
[36]

Xu X, Crow M, Rice BR, Li F, Harris B, et al. 2021. Single-cell RNA sequencing of developing maize ears facilitates functional analysis and trait candidate gene discovery. Developmental Cell 56:557−568.E6

doi: 10.1016/j.devcel.2020.12.015
[37]

Liu H, Hu D, Du P, Wang L, Liang X, et al. 2021. Single-cell RNA-seq describes the transcriptome landscape and identifies critical transcription factors in the leaf blade of the allotetraploid peanut (Arachis hypogaea L.). Plant Biotechnology Journal 19:2261−76

doi: 10.1111/pbi.13656
[38]

Kang M, Choi Y, Kim H, Kim SG. 2022. Single-cell RNA-sequencing of Nicotiana attenuata corolla cells reveals the biosynthetic pathway of a floral scent. New Phytologist 234:527−44

doi: 10.1111/nph.17992
[39]

Bai Y, Liu H, Lyu H, Su L, Xiong J, et al. 2022. Development of a single-cell atlas for woodland strawberry (Fragaria vesca) leaves during early Botrytis cinerea infection using single-cell RNA-seq. Horticulture Research 9:uhab055

doi: 10.1093/hr/uhab055
[40]

Sun X, Feng D, Liu M, Qin R, Li Y, et al. 2022. Single-cell transcriptome reveals dominant subgenome expression and transcriptional response to heat stress in Chinese cabbage. Genome Biology 23:262

doi: 10.1186/s13059-022-02834-4
[41]

Guo X, Liang J, Lin R, Zhang L, Zhang Z, et al. 2022. Single-cell transcriptome reveals differentiation between adaxial and abaxial mesophyll cells in Brassica rapa. Plant Biotechnology Journal 20:2233−35

doi: 10.1111/pbi.13919
[42]

Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, et al. 2009. mRNA-Seq whole-transcriptome analysis of a single cell. Nature Methods 6:377−82

doi: 10.1038/nmeth.1315
[43]

Picelli S, Faridani OR, Björklund ÅK, Winberg G, Sagasser S, et al. 2014. Full-length RNA-seq from single cells using Smart-seq2. Nature Protocols 9:171−81

doi: 10.1038/nprot.2014.006
[44]

Hagemann-Jensen M, Ziegenhain C, Chen P, Ramsköld D, Hendriks GJ, et al. 2020. Single-cell RNA counting at allele and isoform resolution using Smart-seq3. Nature Biotechnology 38:708−14

doi: 10.1038/s41587-020-0497-0
[45]

Hashimshony T, Senderovich N, Avital G, Klochendler A, De Leeuw Y, et al. 2016. CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq. Genome Biology 17:77

doi: 10.1186/s13059-016-0938-8
[46]

Chen H, Liao Y, Zhang G, Sun Z, Yang L, et al. 2021. High-throughput Microwell-seq 2.0 profiles massively multiplexed chemical perturbation. Cell Discovery 7:107

doi: 10.1038/s41421-021-00333-7
[47]

Jaitin DA, Kenigsberg E, Keren-Shaul H, Elefant N, Paul F, et al. 2014. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science 343:776−79

doi: 10.1126/science.1247651
[48]

Satija R, Farrell JA, Gennert D, Schier AF, Regev A. 2015. Spatial reconstruction of single-cell gene expression data. Nature Biotechnology 33:495−502

doi: 10.1038/nbt.3192
[49]

McGinnis CS, Murrow LM, Gartner ZJ. 2019. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Systems 8:329−337.E4

doi: 10.1016/j.cels.2019.03.003
[50]

Wolock SL, Lopez R, Klein AM. 2019. Scrublet: computational identification of cell doublets in single-cell transcriptomic data. Cell Systems 8:281−291.E9

doi: 10.1016/j.cels.2018.11.005
[51]

DePasquale EAK, Schnell DJ, Van Camp PJ, Valiente-Alandí Í, Blaxall BC, et al. 2019. DoubletDecon: deconvoluting doublets from single-cell RNA-sequencing data. Cell Reports 29:1718−1727.E8

doi: 10.1016/j.celrep.2019.09.082
[52]

Xi NM, Li JJ. 2021. Benchmarking computational doublet-detection methods for single-cell RNA sequencing data. Cell Systems 12:176−194.E6

doi: 10.1016/j.cels.2020.11.008
[53]

Korsunsky I, Millard N, Fan J, Slowikowski K, Zhang F, et al. 2019. Fast, sensitive and accurate integration of single-cell data with Harmony. Nature Methods 16:1289−96

doi: 10.1038/s41592-019-0619-0
[54]

Welch JD, Kozareva V, Ferreira A, Vanderburg C, Martin C, et al. 2019. Single-cell multi-omic integration compares and contrasts features of brain cell identity. Cell 177:1873−1887.E17

doi: 10.1016/j.cell.2019.05.006
[55]

Lin Y, Ghazanfar S, Wang KYX, Gagnon-Bartsch JA, Lo KK, et al. 2019. scMerge leverages factor analysis, stable expression, and pseudoreplication to merge multiple single-cell RNA-seq datasets. Proceedings of the National Academy of Sciences of the United States of America 116:9775−84

doi: 10.1073/pnas.1820006116
[56]

Lotfollahi M, Wolf FA, Theis FJ. 2019. scGen predicts single-cell perturbation responses. Nature Methods 16:715−21

doi: 10.1038/s41592-019-0494-8
[57]

Tran HTN, Ang KS, Chevrier M, Zhang X, Lee NYS, et al. 2020. A benchmark of batch-effect correction methods for single-cell RNA sequencing data. Genome Biology 21:12

doi: 10.1186/s13059-019-1850-9
[58]

Haghverdi L, Lun ATL, Morgan MD, Marioni JC. 2018. Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors. Nature Biotechnology 36:421−27

doi: 10.1038/nbt.4091
[59]

Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. 2018. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nature Biotechnology 36:411−20

doi: 10.1038/nbt.4096
[60]

Villani AC, Satija R, Reynolds G, Sarkizova S, Shekhar K, et al. 2017. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science 356:eaah4573

doi: 10.1126/science.aah4573
[61]

Van der Maaten L, Hinton G. 2008. Visualizing Data using t-SNE. Journal of Machine Learning Research 9:2579−605

[62]

Becht E, Mcinnes L, Healy J, Dutertre CA, Kwok IWH, et al. 2019. Dimensionality reduction for visualizing single-cell data using UMAP. Nature Biotechnology 37:38−44

doi: 10.1038/nbt.4314
[63]

Kamiya T, Borghi M, Wang P, Danku JMC, Kalmbach L, et al. 2015. The MYB36 transcription factor orchestrates Casparian strip formation. Proceedings of the National Academy of Sciences of the United States of America 112:10533−38

doi: 10.1073/pnas.1507691112
[64]

Sawchuk MG, Donner TJ, Head P, Scarpella E. 2008. Unique and overlapping expression patterns among members of photosynthesis-associated nuclear gene families in Arabidopsis. Plant Physiology 148:1908−24

doi: 10.1104/pp.108.126946
[65]

Qiu X, Mao Q, Tang Y, Wang L, Chawla R, et al. 2017. Reversed graph embedding resolves complex single-cell trajectories. Nature Methods 14:979−82

doi: 10.1038/nmeth.4402
[66]

Street K, Risso D, Fletcher RB, Das D, Ngai J, et al. 2018. Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genomics 19:477

doi: 10.1186/s12864-018-4772-0
[67]

Herring CA, Banerjee A, Mckinley ET, Simmons AJ, Ping J, et al. 2018. Unsupervised trajectory analysis of single-cell RNA-seq and imaging data reveals alternative tuft cell origins in the gut. Cell Systems 6:37−51.E9

doi: 10.1016/j.cels.2017.10.012
[68]

Li H, Dai X, Huang X, Xu M, Wang Q, et al. 2021. Single-cell RNA sequencing reveals a high-resolution cell atlas of xylem in Populus. Journal of Integrative Plant Biology 63:1906−21

doi: 10.1111/jipb.13159
[69]

Chen Y, Tong S, Jiang Y, Ai F, Feng Y, et al. 2021. Transcriptional landscape of highly lignified poplar stems at single-cell resolution. Genome Biology 22:319

doi: 10.1186/s13059-021-02537-2
[70]

Xie J, Li M, Zeng J, Li X, Zhang D. 2022. Single-cell RNA sequencing profiles of stem-differentiating xylem in poplar. Plant Biotechnology Journal 20:417−19

doi: 10.1111/pbi.13763
[71]

Wang Q, Wu Y, Peng A, Cui J, Zhao M, et al. 2022. Single-cell transcriptome atlas reveals developmental trajectories and a novel metabolic pathway of catechin esters in tea leaves. Plant Biotechnology Journal 20:2089−106

doi: 10.1111/pbi.13891
[72]

Liang X, Ma Z, Ke Y, Wang J, Wang L, et al. 2023. Single-cell transcriptomic analyses reveal cellular and molecular patterns of rubber tree response to early powdery mildew infection. Plant, Cell & Environment 46:2222−37

doi: 10.1111/pce.14585
[73]

Yu C, Hou K, Zhang H, Liang X, Chen C, et al. 2023. Integrated mass spectrometry imaging and single-cell transcriptome atlas strategies provide novel insights into taxoid biosynthesis and transport in Taxus mairei stems. The Plant Journal 115:1243−60

doi: 10.1111/tpj.16315
[74]

Zhan X, Qiu T, Zhang H, Hou K, Liang X, et al. 2023. Mass spectrometry imaging and single-cell transcriptional profiling reveal the tissue-specific regulation of bioactive ingredient biosynthesis in Taxus leaves. Plant Communications 4:100630

doi: 10.1016/j.xplc.2023.100630
[75]

Wolf FA, Hamey FK, Plass M, Solana J, Dahlin JS, et al. 2019. PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome Biology 20:59

doi: 10.1186/s13059-019-1663-x
[76]

Cao J, Spielmann M, Qiu X, Huang X, Ibrahim DM, et al. 2019. The single-cell transcriptional landscape of mammalian organogenesis. Nature 566:496−502

doi: 10.1038/s41586-019-0969-x
[77]

La Manno G, Soldatov R, Zeisel A, Braun E, Hochgerner H, et al. 2018. RNA velocity of single cells. Nature 560:494−98

doi: 10.1038/s41586-018-0414-6
[78]

Bergen V, Lange M, Peidli S, Wolf FA, Theis FJ. 2020. Generalizing RNA velocity to transient cell states through dynamical modeling. Nature Biotechnology 38:1408−14

doi: 10.1038/s41587-020-0591-3
[79]

Wang K, Hou L, Wang X, Zhai X, Lu Z, et al. 2023. PhyloVelo enhances transcriptomic velocity field mapping using monotonically expressed genes. Nature Biotechnology

doi: 10.1038/s41587-023-01887-5
[80]

Jansson S, Douglas CJ. 2007. Populus: a model system for plant biology. Annual Review of Plant Biology 58:435−58

doi: 10.1146/annurev.arplant.58.032806.103956
[81]

Douglas CJ. 2017. Populus as a model tree. In Comparative and Evolutionary Genomics of Angiosperm Trees, eds. Groover A, Cronk Q, PGG, volume 21. Cham: Springer. pp. 61−84. https://doi.org/10.1007/7397_2016_12

[82]

Taylor G. 2002. Populus: Arabidopsis for forestry. Do we need a model tree? Annals of Botany 90:681−89

doi: 10.1093/aob/mcf255
[83]

Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, et al. 2006. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596−604

doi: 10.1126/science.1128691
[84]

Ma T, Wang J, Zhou G, Yue Z, Hu Q, et al. 2014. Erratum: Genomic insights into salt adaptation in a desert poplar. Nature Communications 5:3454

doi: 10.1038/ncomms4454
[85]

Zhang Z, Chen Y, Zhang J, Ma X, Li Y, et al. 2020. Improved genome assembly provides new insights into genome evolution in a desert poplar (Populus euphratica). Molecular Ecology Resources 20:781−94

doi: 10.1111/1755-0998.13142
[86]

Yang W, Wang K, Zhang J, Ma J, Liu J, et al. 2017. The draft genome sequence of a desert tree Populus pruinosa. GigaScience 6:gix075

doi: 10.1093/gigascience/gix075
[87]

Evert RF. 2006. Esau's plant anatomy: meristems, cells, and tissues of the plant body: their structure, function, and development. 3rd edn. New Jersey: John Wiley & Sons. 601 pp.

[88]

Nieminen KM, Kauppinen L, Helariutta Y. 2004. A weed for wood? Arabidopsis as a genetic model for xylem development Plant Physiology 135:653−59

doi: 10.1104/pp.104.040212
[89]

Tung CC, Kuo SC, Yang CL, Yu JH, Huang CE, et al. 2023. Single-cell transcriptomics unveils xylem cell development and evolution. Genome Biology 24:3

doi: 10.1186/s13059-022-02845-1
[90]

Li R, Wang Z, Wang J, Li L. 2023. Combining single-cell RNA sequencing with spatial transcriptome analysis reveals dynamic molecular maps of cambium differentiation in the primary and secondary growth of trees. Plant Communications 4:100665

doi: 10.1016/j.xplc.2023.100665
[91]

Qin Y, Sun M, Li W, Xu M, Shao L, et al. 2022. Single-cell RNA-seq reveals fate determination control of an individual fibre cell initiation in cotton (Gossypium hirsutum). Plant Biotechnology Journal 20:2372−88

doi: 10.1111/pbi.13918
[92]

Wang D, Hu X, Ye H, Wang Y, Yang Q, et al. 2023. Cell-specific clock-controlled gene expression program regulates rhythmic fiber cell growth in cotton. Genome Biology 24:49

doi: 10.1186/s13059-023-02886-0
[93]

Sun Y, Han Y, Sheng K, Yang P, Cao Y, et al. 2023. Single-cell transcriptomic analysis reveals the developmental trajectory and transcriptional regulatory networks of pigment glands in Gossypium bickii. Molecular Plant 16:694−708

doi: 10.1016/j.molp.2023.02.005
[94]

Long L, Xu F, Wang C, Zhao X, Yuan M, et al. 2023. Single-cell transcriptome atlas identified novel regulators for pigment gland morphogenesis in cotton. Plant Biotechnology Journal 21:1100−02

doi: 10.1111/pbi.14035
[95]

Ding Y, Gao W, Qin Y, Li X, Zhang Z, et al. 2023. Single-cell RNA landscape of the special fiber initiation process in Bombax ceiba. Plant Communications 4:100554

doi: 10.1016/j.xplc.2023.100554
[96]

Xia E, Li F, Tong W, Li P, Wu Q, et al. 2019. Tea Plant Information Archive: a comprehensive genomics and bioinformatics platform for tea plant. Plant Biotechnology Journal 17:1938−53

doi: 10.1111/pbi.13111
[97]

Tang C, Yang M, Fang Y, Luo Y, Gao S, et al. 2016. The rubber tree genome reveals new insights into rubber production and species adaptation. Nature Plants 2:16073

doi: 10.1038/nplants.2016.73
[98]

Hu W, Liu T, Zhu C, Wu Q, Chen L, et al. 2022. Physiological, proteomic analysis, and calcium-related gene expression reveal Taxus wallichiana var. mairei adaptability to acid rain stress under various calcium levels. Frontiers in Plant Science 13:845107

doi: 10.3389/fpls.2022.845107
[99]

Guillotin B, Rahni R, Passalacqua M, Mohammed MA, Xu X, et al. 2023. A pan-grass transcriptome reveals patterns of cellular divergence in crops. Nature 617:785−91

doi: 10.1038/s41586-023-06053-0
[100]

Conde D, Triozzi PM, Balmant KM, Doty AL, Miranda M, et al. 2021. A robust method of nuclei isolation for single-cell RNA sequencing of solid tissues from the plant genus Populus. PLoS ONE 16:e0251149

doi: 10.1371/journal.pone.0251149
[101]

Conde D, Triozzi PM, Pereira WJ, Schmidt HW, Balmant KM, et al. 2022. Single-nuclei transcriptome analysis of the shoot apex vascular system differentiation in Populus. Development 149:dev200632

doi: 10.1242/dev.200632
[102]

Fischer U, Kucukoglu M, Helariutta Y, Bhalerao RP. 2019. The dynamics of cambial stem cell activity. Annual Review of Plant Biology 70:293−319

doi: 10.1146/annurev-arplant-050718-100402
[103]

Suer S, Agusti J, Sanchez P, Schwarz M, Greb T. 2011. WOX4 imparts auxin responsiveness to cambium cells in Arabidopsis. The Plant Cell 23:3247−59

doi: 10.1105/tpc.111.087874
[104]

Kucukoglu M, Nilsson J, Zheng B, Chaabouni S, Nilsson O. 2017. WUSCHEL-RELATED HOMEOBOX4 (WOX4)-like genes regulate cambial cell division activity and secondary growth in Populus trees. New Phytologist 215:642−57

doi: 10.1111/nph.14631
[105]

Etchells JP, Mishra LS, Kumar M, Campbell L, Turner SR. 2015. Wood formation in trees is increased by manipulating PXY-regulated cell division. Current Biology 25:1050−55

doi: 10.1016/j.cub.2015.02.023
[106]

Xu Z, Wang Q, Zhu X, Wang G, Qin Y, et al. 2022. Plant Single Cell Transcriptome Hub (PsctH): an integrated online tool to explore the plant single-cell transcriptome landscape. Plant Biotechnology Journal 20:10−12

doi: 10.1111/pbi.13725
[107]

Jin J, Lu P, Xu Y, Tao J, Li Z, et al. 2022. PCMDB: a curated and comprehensive resource of plant cell markers. Nucleic Acids Research 50:D1448−D1455

doi: 10.1093/nar/gkab949
[108]

Chen H, Yin X, Guo L, Yao J, Ding Y, et al. 2021. PlantscRNAdb: a database for plant single-cell RNA analysis. Molecular Plant 14:855−57

doi: 10.1016/j.molp.2021.05.002
[109]

Liu Z, Yu X, Qin A, Zhao Z, Liu Y, et al. 2022. Research strategies for single-cell transcriptome analysis in plant leaves. The Plant Journal 112:27−37

doi: 10.1111/tpj.15927
[110]

Tarashansky AJ, Musser JM, Khariton M, Li P, Arendt D, et al. 2021. Mapping single-cell atlases throughout Metazoa unravels cell type evolution. eLife 10:e66747

doi: 10.7554/eLife.66747
[111]

Liu X, Shen Q, Zhang S. 2023. Cross-species cell-type assignment from single-cell RNA-seq data by a heterogeneous graph neural network. Genome Research 33:96−111

doi: 10.1101/gr.276868.122
[112]

Van de Peer Y, Mizrachi E, Marchal K. 2017. The evolutionary significance of polyploidy. Nature Reviews Genetics 18:411−24

doi: 10.1038/nrg.2017.26
[113]

Jiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, et al. 2011. Ancestral polyploidy in seed plants and angiosperms. Nature 473:97−100

doi: 10.1038/nature09916
[114]

Shafer MER. 2019. Cross-species analysis of single-cell transcriptomic data. Frontiers in Cell and Developmental Biology 7:175

doi: 10.3389/fcell.2019.00175
[115]

Shekhar K, Lapan SW, Whitney IE, Tran NM, Macosko EZ, et al. 2016. Comprehensive classification of retinal bipolar neurons by single-cell transcriptomics. Cell 166:1308−1323.E30

doi: 10.1016/j.cell.2016.07.054
[116]

Pandey S, Shekhar K, Regev A, Schier AF. 2018. Comprehensive identification and spatial mapping of habenular neuronal types using single-cell RNA-seq. Current Biology 28:1052−1065.E7

doi: 10.1016/j.cub.2018.02.040
[117]

Reinig J, Ruge F, Howard M, Ringrose L. 2020. A theoretical model of Polycomb/Trithorax action unites stable epigenetic memory and dynamic regulation. Nature Communications 11:4782

doi: 10.1038/s41467-020-18507-4
[118]

Li X, Chen L, Zhang Q, Sun Y, Li Q, et al. 2019. BRIF-seq: bisulfite-converted randomly integrated fragments sequencing at the single-cell level. Molecular Plant 12:438−46

doi: 10.1016/j.molp.2019.01.004
[119]

Buenostro JD, Wu B, Litzenburger UM, Ruff D, Gonzales ML, et al. 2015. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523:486−90

doi: 10.1038/nature14590
[120]

Cao J, O'day DR, Pliner HA, Kingsley PD, Deng M, et al. 2020. A human cell atlas of fetal gene expression. Science 370:eaba7721

doi: 10.1126/science.aba7721
[121]

Domcke S, Hill AJ, Daza RM, Cao J, O'day DR, et al. 2020. A human cell atlas of fetal chromatin accessibility. Science 370:eaba7612

doi: 10.1126/science.aba7612
[122]

Wang W, Chen K, Chen N, Gao J, Zhang W, et al. 2023. Chromatin accessibility dynamics insight into crosstalk between regulatory landscapes in poplar responses to multiple treatments. Tree Physiology 43:1023−41

doi: 10.1093/treephys/tpad023
[123]

Wang P, Jin S, Chen X, Wu L, Zheng Y, et al. 2021. Chromatin accessibility and translational landscapes of tea plants under chilling stress. Horticulture Research 8:96

doi: 10.1038/s41438-021-00529-8
[124]

Brown K, Takawira LT, O'neill MM, Mizrachi E, Myburg AA, et al. 2019. Identification and functional evaluation of accessible chromatin associated with wood formation in Eucalyptus grandis. New Phytologist 223:1937−51

doi: 10.1111/nph.15897
[125]

Marand AP, Chen Z, Gallavotti A, Schmitz RJ. 2021. A cis-regulatory atlas in maize at single-cell resolution. Cell 184:3041−3055.E21

doi: 10.1016/j.cell.2021.04.014
[126]

Farmer A, Thibivilliers S, Ryu KH, Schiefelbein J, Libault M. 2021. Single-nucleus RNA and ATAC sequencing reveals the impact of chromatin accessibility on gene expression in Arabidopsis roots at the single-cell level. Molecular Plant 14:372−83

doi: 10.1016/j.molp.2021.01.001
[127]

Zhang L, He C, Lai Y, Wang Y, Kang L, et al. 2023. Asymmetric gene expression and cell-type-specific regulatory networks in the root of bread wheat revealed by single-cell multiomics analysis. Genome Biology 24:65

doi: 10.1186/s13059-023-02908-x
[128]

Ouyang W, Luan S, Xiang X, Guo M, Zhang Y, et al. 2022. Profiling plant histone modification at single-cell resolution using snCUT&Tag. Plant Biotechnology Journal 20:420−22

doi: 10.1111/pbi.13768
[129]

Nagano T, Lubling Y, Yaffe E, Wingett SW, Dean W, et al. 2015. Single-cell Hi-C for genome-wide detection of chromatin interactions that occur simultaneously in a single cell. Nature Protocols 10:1986−2003

doi: 10.1038/nprot.2015.127
[130]

Zhou S, Jiang W, Zhao Y, Zhou D. 2019. Single-cell three-dimensional genome structures of rice gametes and unicellular zygotes. Nature Plants 5:795−800

doi: 10.1038/s41477-019-0471-3
[131]

Chen J, Suo S, Tam PPL, Han JDJ, Peng G, et al. 2017. Spatial transcriptomic analysis of cryosectioned tissue samples with Geo-seq. Nature Protocols 12:566−80

doi: 10.1038/nprot.2017.003
[132]

Lubeck E, Coskun AF, Zhiyentayev T, Ahmad M, Cai L. 2014. Single-cell in situ RNA profiling by sequential hybridization. Nature Methods 11:360−61

doi: 10.1038/nmeth.2892
[133]

Shah S, Takei Y, Zhou W, Lubeck E, Yun J, et al. 2018. Dynamics and spatial genomics of the nascent transcriptome by intron seqFISH. Cell 174:363−376.E16

doi: 10.1016/j.cell.2018.05.035
[134]

Eng CHL, Lawson M, Zhu Q, Dries R, Koulena N, et al. 2019. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH+. Nature 568:235−39

doi: 10.1038/s41586-019-1049-y
[135]

Ke R, Mignardi M, Pacureanu A, Svedlund J, Botling J, et al. 2013. In situ sequencing for RNA analysis in preserved tissue and cells. Nature Methods 10:857−60

doi: 10.1038/nmeth.2563
[136]

Lee JH, Daugharthy ER, Scheiman J, Kalhor R, Yang JL, et al. 2014. Highly multiplexed subcellular RNA sequencing in situ. Science 343:1360−63

doi: 10.1126/science.1250212
[137]

Lee JH, Daugharthy ER, Scheiman J, Kalhor R, Ferrante TC, et al. 2015. Fluorescent in situ sequencing (FISSEQ) of RNA for gene expression profiling in intact cells and tissues. Nature Protocols 10:442−58

doi: 10.1038/nprot.2014.191
[138]

Alon S, Goodwin DR, Sinha A, Wassie AT, Chen F, et al. 2021. Expansion sequencing: spatially precise in situ transcriptomics in intact biological systems. Science 371:eaax2656

doi: 10.1126/science.aax2656
[139]

Ståhl PL, Salmén F, Vickovic S, Lundmark A, Navarro JF, et al. 2016. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353:78−82

doi: 10.1126/science.aaf2403
[140]

Giacomello S, Salmén F, Terebieniec BK, Vickovic S, Navarro JF, et al. 2017. Spatially resolved transcriptome profiling in model plant species. Nature Plants 3:17061

doi: 10.1038/nplants.2017.61
[141]

Du J, Wang Y, Chen W, Xu M, Zhou R, et al. 2023. High-resolution anatomical and spatial transcriptome analyses reveal two types of meristematic cell pools within the secondary vascular tissue of poplar stem. Molecular Plant 16:809−28

doi: 10.1016/j.molp.2023.03.005
[142]

Chen A, Liao S, Cheng M, Ma K, Wu L, et al. 2022. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays. Cell 185:1777−92

doi: 10.1016/j.cell.2022.04.003
[143]

Xia K, Sun H, Li J, Li J, Zhao Y, et al. 2022. The single-cell stereo-seq reveals region-specific cell subtypes and transcriptome profiling in Arabidopsis leaves. Developmental Cell 57:1299−1310.E4

doi: 10.1016/j.devcel.2022.04.011
[144]

Liu Y, Yang M, Deng Y, Su G, Enninful A, et al. 2020. High-spatial-resolution multi-omics sequencing via deterministic barcoding in tissue. Cell 183:1665−1681.E18

doi: 10.1016/j.cell.2020.10.026
[145]

Deng Y, Bartosovic M, Ma S, Zhang D, Kukanja P, et al. 2022. Spatial profiling of chromatin accessibility in mouse and human tissues. Nature 609:375−83

doi: 10.1038/s41586-022-05094-1
[146]

Deng Y, Bartosovic M, Kukanja P, Zhang D, Liu Y, et al. 2022. Spatial-CUT&Tag: spatially resolved chromatin modification profiling at the cellular level. Science 375:681−86

doi: 10.1126/science.abg7216
[147]

Wolf FA, Angerer P, Theis FJ. 2018. SCANPY: large-scale single-cell gene expression data analysis. Genome Biology 19:15

doi: 10.1186/s13059-017-1382-0
[148]

Palla G, Spitzer H, Klein M, Fischer D, Schaar AC, et al. 2022. Squidpy: a scalable framework for spatial omics analysis. Nature Methods 19:171−78

doi: 10.1038/s41592-021-01358-2
[149]

Bergenstråhle J, Larsson L, Lundeberg J. 2020. Seamless integration of image and molecular analysis for spatial transcriptomics workflows. BMC Genomics 21:482

doi: 10.1186/s12864-020-06832-3
[150]

Dries R, Zhu Q, Dong R, Eng CHL, Li H, et al. 2021. Giotto: a toolbox for integrative analysis and visualization of spatial expression data. Genome Biology 22:78

doi: 10.1186/s13059-021-02286-2
[151]

Jones RC, Karkanias J, Krasnow MA, Pisco AO, Quake SR, et al. 2022. The Tabula Sapiens: a multiple-organ, single-cell transcriptomic atlas of humans. Science 376:eabl4896

doi: 10.1126/science.abl4896
[152]

Eraslan G, Drokhlyansky E, Anand S, Fiskin E, Subramanian A, et al. 2022. Single-nucleus cross-tissue molecular reference maps toward understanding disease gene function. Science 376:abl429

doi: 10.1126/science.abl429
[153]

Conde CD, Xu C, Jarvis LB, Rainbow DB, Wells SB, et al. 2022. Cross-tissue immune cell analysis reveals tissue-specific features in humans. Science 376:eabl5197

doi: 10.1126/science.abl5197
[154]

Suo C, Dann E, Goh I, Jardine L, Kleshchevnikov V, et al. 2022. Mapping the developing human immune system across organs. Science 376:eabo0510

doi: 10.1126/science.abo0510
[155]

Liu Z, Zhang Z. 2022. Mapping cell types across human tissues. Science 376:695−96

doi: 10.1126/science.abq2116