[1] |
Butterworth PJ, Warren FJ, Grassby T, Patel H, Ellis PR. 2012. Analysis of starch amylolysis using plots for first-order kinetics. Carbohydrate Polymers 87:2189−97 doi: 10.1016/j.carbpol.2011.10.048 |
[2] |
Li J, Wu Z, Liu L, Yang J, Wang L, et al. 2023. The research advance of resistant starch: structural characteristics, modification method, immunomodulatory function, and its delivery systems application. Critical Reviews in Food Science and Nutrition1−18 doi: 10.1080/10408398.2023.2230287 |
[3] |
Zhang Y, Dong L, Liu L, Wu Z, Pan D, et al. 2022. Recent advances of stimuli-responsive polysaccharide hydrogels in delivery systems: A review. Journal of Agricultural and Food Chemistry 70:6300−16 doi: 10.1021/acs.jafc.2c01080 |
[4] |
Wang S, Copeland L. 2013. Molecular disassembly of starch granules during gelatinization and its effect on starch digestibility: a review. Food & Function 4:1564−80 doi: 10.1039/c3fo60258c |
[5] |
BeMiller JN. 2011. Pasting, paste, and gel properties of starch–hydrocolloid combinations. Carbohydrate Polymers 86:386−423 doi: 10.1016/j.carbpol.2011.05.064 |
[6] |
Funami T. 2009. Functions of food polysaccharides to control the gelatinization and retrogradation behaviors of starch in an aqueous system in relation to the macromolecular characteristics of food polysaccharides. Food Science and Technology Research 15:557−68 doi: 10.3136/fstr.15.557 |
[7] |
Zhou S, Hong Y, Gu Z, Cheng L, Li Z, et al. 2020. Effect of heat-moisture treatment on the in vitro digestibility and physicochemical properties of starch-hydrocolloid complexes. Food Hydrocolloids 104:105736 doi: 10.1016/j.foodhyd.2020.105736 |
[8] |
He H, Chi C, Xie F, Li X, Liang Y, et al. 2020. Improving the in vitro digestibility of rice starch by thermomechanically assisted complexation with guar gum. Food Hydrocolloids 102:105637 doi: 10.1016/j.foodhyd.2019.105637 |
[9] |
Arranz-Martínez P, Srikaeo K, González-Sánchez AL. 2014. Effects of non-starch polysaccharides on physicochemical properties and in vitro starch digestibility of rice starches. Bioactive Carbohydrates and Dietary Fibre 4:6−15 doi: 10.1016/j.bcdf.2014.06.002 |
[10] |
Chen L, Tian Y, Zhang Z, Tong Q, Sun B, et al. 2017. Effect of pullulan on the digestible, crystalline and morphological characteristics of rice starch. Food Hydrocolloids 63:383−90 doi: 10.1016/j.foodhyd.2016.09.021 |
[11] |
Gularte MA, Rosell CM. 2011. Physicochemical properties and enzymatic hydrolysis of different starches in the presence of hydrocolloids. Carbohydrate Polymers 85:237−44 doi: 10.1016/j.carbpol.2011.02.025 |
[12] |
Marchant JL, Blanshard JMV. 1978. Studies of the dynamics of the gelatinization of starch granules employing a small angle light scattering system. Starch 30:257−64 doi: 10.1002/star.19780300803 |
[13] |
Li C. 2022. Recent progress in understanding starch gelatinization - An important property determining food quality. Carbohydrate Polymers 293:119735 doi: 10.1016/j.carbpol.2022.119735 |
[14] |
Jenkins PJ, Donald AM. 1998. Gelatinisation of starch a combined SAXS/WAXS/DSC and SANS study. Carbohydrate Research 308:133−47 doi: 10.1016/S0008-6215(98)00079-2 |
[15] |
Wani AA, Singh P, Shah MA, Schweiggert-Weisz U, Gul K, Wani IA. 2012. Rice starch diversity: effects on structural, morphological, thermal, and physicochemical properties-A review. Comprehensive Reviews in Food Science and Food Safety 11:417−36 doi: 10.1111/j.1541-4337.2012.00193.x |
[16] |
Slade L, Levine H. 1988. Non-equilibrium melting of native granular starch Part I temperature location of the glass transition associated with gelatinization of A-type cereal starches. Carbohydrate Polymers 8:183−208 doi: 10.1016/0144-8617(88)90002-1 |
[17] |
Waigh TA, Gidley MJ, Komanshek BU, Donald AM. 2000. The phase transformations in starch during gelatinisation: A liquid crystalline approach. Carbohydrate Research 328:165−76 doi: 10.1016/S0008-6215(00)00098-7 |
[18] |
Funami T, Kataoka Y, Omoto T, Goto Y, Asaia I, et al. 2005. Food hydrocolloids control the gelatinization and retrogradation behavior of starch. 2b. Functions of guar gums with different molecular weights on the retrogradation behavior of corn starch. Food Hydrocolloids 19:25−36 doi: 10.1016/j.foodhyd.2004.04.009 |
[19] |
Kumar V, Sinha AK, Makkar HPS, de Boeck G, Becker K. 2012. Dietary roles of non-starch polysaccharides in human nutrition: a review. Critical Reviews in Food Science and Nutrition 52:899−935 doi: 10.1080/10408398.2010.512671 |
[20] |
Han YL, Gao J, Yin YY, Jin ZY, Xu XM, et al. 2016. Extraction optimization by response surface methodology of mucilage polysaccharide from the peel of Opuntia dillenii haw. fruits and their physicochemical properties. Carbohydrate Polymers 151:381−91 doi: 10.1016/j.carbpol.2016.05.085 |
[21] |
Wang S, Xu G, Zou J. 2022. Soluble non-starch polysaccharides in fish feed: implications for fish metabolism. Fish Physiology and Biochemistry 00:1−22 doi: 10.1007/s10695-022-01131-y |
[22] |
Bailey RW. 1973. Structural carbohydrates. In Chemistry and Biochemistry of Herbage, eds. Butler GW, Bailey RW. Vol 1. London: Academic Press. pp. 157−211. |
[23] |
Zhou Y, Wang D, Zhang L, Du X, Zhou X. 2008. Effect of polysaccharides on gelatinization and retrogradation of wheat starch. Food Hydrocolloids 22:505−12 doi: 10.1016/j.foodhyd.2007.01.010 |
[24] |
Aguirre-Cruz A, Méndez-Montealvo G, Solorza-Feria J, Bello-Pérez LA. 2005. Effect of carboxymethylcellulose and xanthan gum on the thermal, functional and rheological properties of dried nixtamalised maize masa. Carbohydrate Polymers 62:222−31 doi: 10.1016/j.carbpol.2005.07.026 |
[25] |
Zhang Y, Li Y, Xia Q, Liu L, Wu Z, et al. 2023. Recent advances of cereal β-glucan on immunity with gut microbiota regulation functions and its intelligent gelling application. Critical Reviews in Food Science and Nutrition 63:3895−911 doi: 10.1080/10408398.2021.1995842 |
[26] |
Satrapai S, Suphantharika M. 2007. Influence of spent brewer’s yeast β-glucan on gelatinization and retrogradation of rice starch. Carbohydrate Polymers 67:500−10 doi: 10.1016/j.carbpol.2006.06.028 |
[27] |
Banchathanakij R, Suphantharika M. 2009. Effect of different β-glucans on the gelatinisation and retrogradation of rice starch. Food Chemistry 114:5−14 doi: 10.1016/j.foodchem.2008.09.016 |
[28] |
Luo D, Li Y, Xu B, Ren G, Li P, et al. 2017. Effects of inulin with different degree of polymerization on gelatinization and retrogradation of wheat starch. Food Chemistry 229:35−43 doi: 10.1016/j.foodchem.2017.02.058 |
[29] |
Hou C, Zhao X, Tian M, Zhou Y, Yang R, et al. 2020. Impact of water extractable arabinoxylan with different molecular weight on the gelatinization and retrogradation behavior of wheat starch. Food Chemistry 318:126477 doi: 10.1016/j.foodchem.2020.126477 |
[30] |
Qiu S, Yadav MP, Liu Y, Chen H, Tatsumi E, et al. 2016. Effects of corn fiber gum with different molecular weights on the gelatinization behaviors of corn and wheat starch. Food Hydrocolloids 53:180−86 doi: 10.1016/j.foodhyd.2015.01.034 |
[31] |
Xie F, Zhang H, Xia Y, Ai L. 2020. Effects of tamarind seed polysaccharide on gelatinization, rheological, and structural properties of corn starch with different amylose/amylopectin ratios. Food Hydrocolloids 105:1055854 doi: 10.1016/j.foodhyd.2020.105854 |
[32] |
Funami T, Kataoka Y, Noda S, Hiroe M, Ishihara S, et al. 2008. Functions of fenugreek gum with various molecular weights on the gelatinization and retrogradation behaviors of corn starch-2: Characterizations of starch and investigations of corn starch/fenugreek gum composite system at a relatively low starch concentration; 5w/v%. Food Hydrocolloids 22:777−87 doi: 10.1016/j.foodhyd.2007.03.004 |
[33] |
Funami T, Kataokaa Y, Omoto T, Goto Y, Asaia I, et al. 2005. Food hydrocolloids control the gelatinization and retrogradation behavior of starch. 2a. Functions of guar gums with different molecular weights on the gelatinization behavior of corn starch. Food Hydrocolloids 19:15−24 doi: 10.1016/j.foodhyd.2004.04.008 |
[34] |
Yoshimura M, Takaya T, Nishinari K. 1996. Effects of konjac-glucomannan on the gelatinization and retrogradation of corn starch as determined by rheology and differential scanning calorimetry. Journal of Agricultural and Food Chemistry 44:2970−76 doi: 10.1021/jf960221h |
[35] |
Schwartz JM, Le Bail K, Garnier C, Llamas G, Queveau D, et al. 2014. Available water in konjac glucomannan-starch mixtures: Influence on the gelatinization, retrogradation and complexation properties of two starches. Food Hydrocolloids 41:71−78 doi: 10.1016/j.foodhyd.2013.12.014 |
[36] |
Torres MD, Moreira R, Chenlo F, Morel MH. 2013. Effect of water and guar gum content on thermal properties of chestnut flour and its starch. Food Hydrocolloids 33:192−98 doi: 10.1016/j.foodhyd.2013.03.004 |
[37] |
Nagano T, Tamaki E, Funami T. 2008. Influence of guar gum on granule morphologies and rheological properties of maize starch. Carbohydrate Polymers 72:95−101 doi: 10.1016/j.carbpol.2007.07.028 |
[38] |
Kim WW, Yoo B. 2011. Rheological and thermal effects of galactomannan addition to acorn starch paste. LWT - Food Science and Technology 44:759−64 doi: 10.1016/j.lwt.2010.11.009 |
[39] |
Khanna S, Tester RF. 2006. Influence of purified konjac glucomannan on the gelatinisation and retrogradation properties of maize and potato starches. Food Hydrocolloids 20:567−76 doi: 10.1016/j.foodhyd.2005.05.004 |
[40] |
Mali S, Ferrero C, Redigonda V, Beleia AP, Grossmann MVE, et al. 2003. Influence of pH and hydrocolloids addition on yam (Dioscorea alata) starch pastes stability. LWT - Food Science and Technology 36:475−81 doi: 10.1016/S0023-6438(03)00043-4 |
[41] |
Yu Z, Wang YS, Chen HH, Li QQ, Wang Q. 2018. The gelatinization and retrogradation properties of wheat starch with the addition of stearic acid and sodium alginate. Food Hydrocolloids 81:77−86 doi: 10.1016/j.foodhyd.2018.02.041 |
[42] |
Funami T, Noda S, Hiroe M, Asai I, Ikeda S, et al. 2008. Functions of iota-carrageenan on the gelatinization and retrogradation behaviors of corn starch in the presence or absence of various salts. Food Hydrocolloids 22:1273−82 doi: 10.1016/j.foodhyd.2007.09.008 |
[43] |
Liu Y, Dong L, Li Y, Chen Q, Wang L, et al. 2023. Soy protein isolate-citrus pectin composite hydrogels induced by TGase and ultrasonic treatment: Potential targeted delivery system for probiotics. Food Hydrocolloids 143:108901 doi: 10.1016/j.foodhyd.2023.108901 |
[44] |
Xie F, Gu BJ, Saunders SR, Ganjyal GM. 2021. High methoxyl pectin enhances the expansion characteristics of the cornstarch relative to the low methoxyl pectin. Food Hydrocolloids 110:106131 doi: 10.1016/j.foodhyd.2020.106131 |
[45] |
Witczak T, Witczak M, Ziobro R. 2014. Effect of inulin and pectin on rheological and thermal properties of potato starch paste and gel. Journal of Food Engineering 124:72−79 doi: 10.1016/j.jfoodeng.2013.10.005 |
[46] |
Liu H, Eskin NAM, Cui SW. 2003. Interaction of wheat and rice starches with yellow mustard mucilage. Food Hydrocolloids 17:863−69 doi: 10.1016/S0268-005X(03)00107-3 |
[47] |
Alamri MS, Mohamed AA, Hussain S. 2013. Effects of alkaline-soluble okra gum on rheological and thermal properties of systems with wheat or corn starch. Food Hydrocolloids 30:541−51 doi: 10.1016/j.foodhyd.2012.07.003 |
[48] |
Luo Y, Han X, Shen M, Yang J, Ren Y, et al. 2021. Mesona chinensis polysaccharide on the thermal, structural and digestibility properties of waxy and normal maize starches. Food Hydrocolloids 112:106317 doi: 10.1016/j.foodhyd.2020.106317 |
[49] |
Raguzzoni JC, Delgadillo I, Lopes da Silva JA. 2016. Influence of a cationic polysaccharide on starch functionality. Carbohydrate Polymers 150:369−77 doi: 10.1016/j.carbpol.2016.05.024 |
[50] |
Xu Z, Zhong F, Li Y, Shoemaker CF, Yokoyama WH, et al. 2012. Effect of polysaccharides on the gelatinization properties of cornstarch dispersions. Journal of Agricultural and Food Chemistry 60:658−64 doi: 10.1021/jf204042m |
[51] |
Huc D, Matignon A, Barey P, Desprairies M, Mauduit S, et al. 2014. Interactions between modified starch and carrageenan during pasting. Food Hydrocolloids 36:355−61 doi: 10.1016/j.foodhyd.2013.08.023 |
[52] |
Viturawong Y, Achayuthakan P, Suphantharika M. 2008. Gelatinization and rheological properties of rice starch/xanthan mixtures: Effects of molecular weight of xanthan and different salts. Food Chemistry 111:106−14 doi: 10.1016/j.foodchem.2008.03.041 |
[53] |
Chaisawang M, Suphantharika M. 2006. Pasting and rheological properties of native and anionic tapioca starches as modified by guar gum and xanthan gum. Food Hydrocolloids 20:641−49 doi: 10.1016/j.foodhyd.2005.06.003 |
[54] |
Lee EC, Lee J, Chung HJ, Park EY. 2021. Impregnation of normal maize starch granules with ionic hydrocolloids by alkaline dry heating. Food Hydrocolloids 113:106462 doi: 10.1016/j.foodhyd.2020.106462 |
[55] |
Tester RF, Sommerville MD. 2003. The effects of non-starch polysaccharides on the extent of gelatinisation, swelling andα-amylase hydrolysis of maize and wheat starches. Food Hydrocolloids 17:41−54 doi: 10.1016/S0268-005X(02)00032-2 |
[56] |
Tang M, Hong Y, Gu Z, Zhang Y, Cai X. 2013. The effect of xanthan on short and long-term retrogradation of rice starch. Starch 65:702−8 doi: 10.1002/star.201200170 |
[57] |
Yang K, Luo X, Zhai Y, Liu J, Chen K, et al. 2021. Influence of sodium alginate on the gelatinization, rheological, and retrogradation properties of rice starch. International Journal of Biological Macromolecules 185:708−15 doi: 10.1016/j.ijbiomac.2021.06.207 |
[58] |
Shi X, Yu M, Yin H, Peng L, Cao Y, et al. 2023. Multiscale structures, physicochemical properties, and in vitro digestibility of oat starch complexes co-gelatinized with jicama non-starch polysaccharides. Food Hydrocolloids 144:108983 doi: 10.1016/j.foodhyd.2023.108983 |
[59] |
Han X, Wen H, Luo Y, Yang J, Xiao W, et al. 2022. Effects of chitosan modification, cross-linking, and oxidation on the structure, thermal stability, and adsorption properties of porous maize starch. Food Hydrocolloids 124:107288 doi: 10.1016/j.foodhyd.2021.107288 |
[60] |
Chen L, Zhang H, McClements DJ, Zhang Z, Zhang R, et al. 2019. Effect of dietary fibers on the structure and digestibility of fried potato starch: A comparison of pullulan and pectin. Carbohydrate Polymers 215:47−57 doi: 10.1016/j.carbpol.2019.03.046 |
[61] |
Singh J, Dartois A, Kaur L. 2010. Starch digestibility in food matrix a review. Trends in Food Science & Technology 21:168−80 doi: 10.1016/j.jpgs.2009.12.001 |
[62] |
Bai Y, Wu P, Wang K, Li C, Li E, et al. 2017. Effects of pectin on molecular structural changes in starch during digestion. Food Hydrocolloids 69:10−18 doi: 10.1016/j.foodhyd.2017.01.021 |
[63] |
Tharakan A, Norton IT, Fryer PJ, Bakalis S. 2010. Mass transfer and nutrient absorption in a simulated model of small intestine. Journal of Food Science 75:E339−E346 doi: 10.1111/j.1750-3841.2010.01659.x |
[64] |
Dhital S, Dolan G, Stokes JR, Gidley MJ. 2014. Enzymatic hydrolysis of starch in the presence of cereal soluble fibre polysaccharides. Food & Function 5:579−86 doi: 10.1039/c3fo60506j |
[65] |
Kim HJ, White PJ. 2013. Impact of the molecular weight, viscosity, and solubility of beta-glucan on in vitro oat starch digestibility. Journal of Agricultural and Food Chemistry 61:3270−77 doi: 10.1021/jf305348j |
[66] |
Brennan CS, Blake DE, Roberts FG, Ellis PR. 1996. Effects of guar galactomannan on wheat bread microstructure and on the in vitro and in vivo digestibility of starch in bread. Journal of Cereal Science 24:151−60 doi: 10.1006/jcrs.1996.0048 |
[67] |
Aravind N, Sissons MJ, Fellows CM, Blazek J, Gilbert EP. 2012. Effect of inulin soluble dietary fibre addition on technological, sensory, and structural properties of durum wheat spaghetti. Food Chemistry 132:993−1002 doi: 10.1016/j.foodchem.2011.11.085 |
[68] |
Zheng M, Lei S, Wu H, Zheng B, Zhang Y, et al. 2019. Effect of chitosan on the digestibility and molecular structural properties of lotus seed starch. Food and Chemical Toxicology 133:110731 doi: 10.1016/j.fct.2019.110731 |
[69] |
Ramírez C, Millon C, Nuñez H, Pinto M, Valencia P, et al. 2015. Study of effect of sodium alginate on potato starch digestibility during in vitro digestion. Food Hydrocolloids 44:328−32 doi: 10.1016/j.foodhyd.2014.08.023 |
[70] |
Nsor-Atindana J, Yu M, Goff HD, Chen M, Zhong F. 2020. Analysis of kinetic parameters and mechanisms of nanocrystalline cellulose inhibition of α-amylase and alpha-glucosidase in simulated digestion of starch. Food & Function 11:4719−31 doi: 10.1039/d0fo00317d |
[71] |
McClements DJ. 2021. Food hydrocolloids: Application as functional ingredients to control lipid digestion and bioavailability. Food Hydrocolloids 111:106404 doi: 10.1016/j.foodhyd.2020.106404 |
[72] |
Srikaeo K, Laothongsan P, Lerdluksamee C. 2018. Effects of gums on physical properties, microstructure and starch digestibility of dried-natural fermented rice noodles. International Journal of Biological Macromolecules 109:517−23 doi: 10.1016/j.ijbiomac.2017.12.121 |
[73] |
Banerjee S, Bhattacharya S. 2012. Food gels: gelling process and new applications. Critical Review in Food Science and Nutrition 52:334−46 doi: 10.1080/10408398.2010.500234 |
[74] |
Culetu A, Duta DE, Papageorgiou M, Varzakas T. 2021. The role of hydrocolloids in gluten-free bread and pasta; rheology, characteristics, staling and glycemic index. Foods 10:3121 doi: 10.3390/foods10123121 |
[75] |
Yemenicioğlu A, Farris S, Turkyilmaz M, Gulec S. 2020. A review of current and future food applications of natural hydrocolloids. International Journal of Food Science & Technology 55:1389−406 doi: 10.1111/ijfs.14363 |
[76] |
Kanyuck KM, Mills TB, Norton IT, Norton-Welch AB. 2022. Release of glucose and maltodextrin DE 2 from gellan gum gels and the impacts of gel structure. Food Hydrocolloids 122:107090 doi: 10.1016/j.foodhyd.2021.107090 |
[77] |
Chen L, Xu Y, Fan T, Liao Z, Wu P, et al. 2016. Gastric emptying and morphology of a 'near real' in vitro human stomach model (RD-IV-HSM). Journal of Food Engineering 183:1−8 doi: 10.1016/j.jfoodeng.2016.02.025 |
[78] |
Huang S, Chi C, Li X, Zhang Y, Chen L. 2022. Understanding the structure, digestibility, texture and flavor attributes of rice noodles complexation with xanthan and dodecyl gallate. Food Hydrocolloids 127:107538 doi: 10.1016/j.foodhyd.2022.107538 |
[79] |
Liu C, Zhang H, Chen R, Chen J, Liu X, et al. 2021. Effects of creeping fig seed polysaccharide on pasting, rheological, textural properties and in vitro digestibility of potato starch. Food Hydrocolloids 118:106810 doi: 10.1016/j.foodhyd.2021.106810 |
[80] |
Ma YS, Pan Y, Xie QT, Li XM, Zhang B, et al. 2019. Evaluation studies on effects of pectin with different concentrations on the pasting, rheological and digestibility properties of corn starch. Food Chemistry 274:319−23 doi: 10.1016/j.foodchem.2018.09.005 |
[81] |
Feng YY, Mu TH, Zhang M, Ma MM. 2020. Effects of different polysaccharides and proteins on dough rheological properties, texture, structure and in vitro starch digestibility of wet sweet potato vermicelli. International Journal of Biological Macromolecules 148:1−10 doi: 10.1016/j.ijbiomac.2019.12.225 |
[82] |
Zhu F, Zhang Y. 2019. Effect of konjac glucomannan on physicochemical properties of quinoa and maize starches. Cereal Chemistry 96:878−84 doi: 10.1002/cche.10188 |
[83] |
Liu X, Mu T, Sun H, Zhang M, Chen J, Fauconnier ML. 2018. Influence of different hydrocolloids on dough thermo-mechanical properties and in vitro starch digestibility of gluten-free steamed bread based on potato flour. Food Chemistry 239:1064−74 doi: 10.1016/j.foodchem.2017.07.047 |
[84] |
Zhang B, Bai B, Pan Y, Li XM, Cheng JS, et al. 2018. Effects of pectin with different molecular weight on gelatinization behavior, textural properties, retrogradation and in vitro digestibility of corn starch. Food Chemistry 264:58−63 doi: 10.1016/j.foodchem.2018.05.011 |
[85] |
Ji N, Liu C, Li M, Sun Q, Xiong L. 2018. Interaction of cellulose nanocrystals and amylase: Its influence on enzyme activity and resistant starch content. Food Chemistry 245:481−87 doi: 10.1016/j.foodchem.2017.10.130 |
[86] |
Santos FG, Aguiar EV, Rosell CM, Capriles VD. 2021. Potential of chickpea and psyllium in gluten-free breadmaking: Assessing bread's quality, sensory acceptability, and glycemic and satiety indexes. Food Hydrocolloids 113:106487 doi: 10.1016/j.foodhyd.2020.106487 |
[87] |
Alshammari N, Muttakin S, Liu Q, Gouseti O, Alyami J, et al. 2021. The effect of adding gellan gum to white rice on the starch hydrolysis and glycemic index. Current Developments in Nutrition 5:571 doi: 10.1093/cdn/nzab044_002 |
[88] |
Srikaeo K, Paphonyanyong W. 2020. Texture, microstructure and in-vitro starch digestibility of waxy rice cooked with hydrocolloids. Food Research 4:1089−97 doi: 10.26656/fr.2017.4(4).026 |
[89] |
Raungrusmee S, Shrestha S, Sadiq MB, Anal AK. 2020. Influence of resistant starch, xanthan gum, inulin and defatted rice bran on the physicochemical, functional and sensory properties of low glycemic gluten-free noodles. LWT 126:109279 doi: 10.1016/j.lwt.2020.109279 |
[90] |
Liu L, Kong F. 2019. In vitro investigation of the influence of nano-cellulose on starch and milk digestion and mineral adsorption. International Journal of Biological Macromolecules 137:1278−85 doi: 10.1016/j.ijbiomac.2019.06.194 |
[91] |
Fratelli C, Muniz DG, Santos FG, Capriles VD. 2018. Modelling the effects of psyllium and water in gluten-free bread: An approach to improve the bread quality and glycemic response. Journal of Functional Foods 42:339−45 doi: 10.1016/j.jff.2018.01.015 |
[92] |
Liu L, Kerr WL, Kong F, Dee DR, Lin M. 2018. Influence of nano-fibrillated cellulose (NFC) on starch digestion and glucose absorption. Carbohydrate Polymers 196:146−53 doi: 10.1016/j.carbpol.2018.04.116 |
[93] |
Oh IK, Bae IY, Lee HG. 2018. Complexation of high amylose rice starch and hydrocolloid through dry heat treatment: Physical property and in vitro starch digestibility. Journal of Cereal Science 79:341−47 doi: 10.1016/j.jcs.2017.11.017 |
[94] |
Diao Y, Si X, Shang W, Zhou Z, Wang Z, et al. 2017. Effect of interactions between starch and chitosan on waxy maize starch physicochemical and digestion properties. CyTA - Journal of Food 15:327−35 doi: 10.1080/19476337.2016.1255916 |
[95] |
Jang HL, Bae IY, Lee HG. 2015. In vitro starch digestibility of noodles with various cereal flours and hydrocolloids. LWT - Food Science and Technology 63:122−28 doi: 10.1016/j.lwt.2015.03.029 |
[96] |
Sasaki T, Sotome I, Okadome H. 2015. In vitro starch digestibility and in vivo glucose response of gelatinized potato starch in the presence of non-starch polysaccharides. Starch 67:415−23 |
[97] |
Fabek H, Messerschmidt S, Brulport V, Goff HD. 2014. The effect of in vitro digestive processes on the viscosity of dietary fibres and their influence on glucose diffusion. Food Hydrocolloids 35:718−26 doi: 10.1016/j.foodhyd.2013.08.007 |
[98] |
Srichamroen A. 2014. Physical quality and in vitro starch digestibility of bread as affected by addition of extracted malva nut gum. LWT - Food Science and Technology 59:486−94 doi: 10.1016/j.lwt.2014.04.046 |