[1] |
Liao Q, Du R, Gou J, Guo L, Shen H, et al. 2020. The genomic architecture of the sex-determining region and sex-related metabolic variation in Ginkgo biloba. The Plant Journal 104:1399−409 doi: 10.1111/tpj.15009 |
[2] |
Massonnet M, Cochetel N, Minio A, Vondras AM, Lin J, et al. 2020. The genetic basis of sex determination in grapes. Nature communications 11:2902 doi: 10.1038/s41467-020-16700-z |
[3] |
Marshall C, Warnke S, Amundsen K. 2022. Simple sequence repeat marker development and diversity analysis in buffalograss. Crop Science 62:1373−82 doi: 10.1002/csc2.20725 |
[4] |
Johnson PG, Kenworthy KE, Auld DL, Riordan TP. 2001. Distribution of buffalograss polyploid variation in the southern Great Plains. Crop Science 41:909−13 doi: 10.2135/cropsci2001.413909x |
[5] |
Johnson PG, Riordan TP, Johnson-Cicalese JJ. 2000. Low-mowing tolerance in buffalograss. Crop Science 40:1339−43 doi: 10.2135/cropsci2000.4051339x |
[6] |
Budak H, Shearman RC, Parmaksiz I, Gaussoin RE, Riordan TP, et al. 2004. Molecular characterization of buffalograss germplasm using sequence-related amplified polymorphism markers. Theoretical and Applied Genetics 108:328−34 doi: 10.1007/s00122-003-1428-4 |
[7] |
Johnson PG, Riordan TP, Arumuganathan K. 1998. Ploidy level determinations in buffalograss clones and populations. Crop Science 38:478−82 doi: 10.2135/cropsci1998.0011183X003800020034x |
[8] |
Stark R, Grzelak M, Hadfield J. 2019. RNA sequencing: the teenage years. Nature Reviews Genetics 20:631−56 doi: 10.1038/s41576-019-0150-2 |
[9] |
Yan H, Sun M, Zhang Z, Jin Y, Zhang A, et al. 2023. Pangenomic analysis identifies structural variation associated with heat tolerance in pearl millet. Nature Genetics 55:507−18 doi: 10.1038/s41588-023-01302-4 |
[10] |
Guan J, Yin S, Yue Y, Liu L, Guo Y, et al. 2022. Single-molecule long-read sequencing analysis improves genome annotation and sheds new light on the transcripts and splice isoforms of Zoysia japonica. BMC Plant Biology 22:263 doi: 10.1186/s12870-022-03640-7 |
[11] |
Teng K, Teng W, Wen H, Yue Y, Guo W, et al. 2019. PacBio single-molecule long-read sequencing shed new light on the complexity of the Carex breviculmis transcriptome. BMC Genomics 20:789 doi: 10.1186/s12864-019-6163-6 |
[12] |
Liu L, Teng K, Fan X, Han C, Zhang H, et al. 2022. Combination analysis of single-molecule long-read and Illumina sequencing provides insights into the anthocyanin accumulation mechanism in an ornamental grass, Pennisetum setaceum cv. Rubrum. Plant Molecular Biology 109:159−75 doi: 10.1007/s11103-022-01264-x |
[13] |
Wenger AM, Peluso P, Rowell WJ, Chang PC, Hall RJ, et al. 2019. Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Nature Biotechnology 37:1155−62 doi: 10.1038/s41587-019-0217-9 |
[14] |
Jozefczuk S, Klie S, Catchpole G, Szymanski J, Cuadros-Inostroza A, et al. 2010. Metabolomic and transcriptomic stress response of Escherichia coli. Molecular Systems Biology 6:364 doi: 10.1038/msb.2010.18 |
[15] |
Bradley PH, Brauer MJ, Rabinowitz JD, Troyanskaya OG. 2009. Coordinated concentration changes of transcripts and metabolites in Saccharomyces cerevisiae. PLoS Computational Biology 5:e1000270 doi: 10.1371/journal.pcbi.1000270 |
[16] |
Sun M, Yan H, Zhang A, Jin Y, Lin C, et al. 2023. Milletdb: a multi-omics database to accelerate the research of functional genomics and molecular breeding of millets. Plant Biotechnology Journal 21:2348−57 doi: 10.1111/pbi.14136 |
[17] |
Sharon D, Tilgner H, Grubert F, Snyder M. 2013. A single-molecule long-read survey of the human transcriptome. Nature Biotechnology 31:1009−14 doi: 10.1038/nbt.2705 |
[18] |
Li W, Godzik A. 2006. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22:1658−59 doi: 10.1093/bioinformatics/btl158 |
[19] |
Hackl T, Hedrich R, Schultz J, Förster F. 2014. proovread: large-scale high-accuracy PacBio correction through iterative short read consensus. Bioinformatics 30:3004−11 doi: 10.1093/bioinformatics/btu392 |
[20] |
Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, et al. 2013. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nature Protocols 8:1494−512 doi: 10.1038/nprot.2013.084 |
[21] |
Liu X, Mei W, Soltis PS, Soltis DE, Barbazuk WB. 2017. Detecting alternatively spliced transcript isoforms from single-molecule long-read sequences without a reference genome. Molecular Ecology Resources 17:1243−56 doi: 10.1111/1755-0998.12670 |
[22] |
Beier S, Thiel T, Münch T, Scholz U, Mascher M. 2017. MISA-web: a web server for microsatellite prediction. Bioinformatics 33:2583−85 doi: 10.1093/bioinformatics/btx198 |
[23] |
Zheng Y, Jiao C, Sun H, Rosli HG, Pombo MA, et al. 2016. iTAK: a program for genome-wide prediction and classification of plant transcription factors, transcriptional regulators, and protein kinases. Molecular Plant 9:1667−70 doi: 10.1016/j.molp.2016.09.014 |
[24] |
Kong L, Zhang Y, Ye Z, Liu X, Zhao S, et al. 2007. CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Research 35:W345−W349 doi: 10.1093/nar/gkm391 |
[25] |
Sun L, Luo H, Bu D, Zhao G, Yu K, et al. 2013. Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts. Nucleic Acids Research 41:e166 doi: 10.1093/nar/gkt646 |
[26] |
Wang L, Park HJ, Dasari S, Wang S, Kocher JP, et al. 2013. CPAT: Coding-Potential Assessment Tool using an alignment-free logistic regression model. Nucleic Acids Research 41:e74 doi: 10.1093/nar/gkt006 |
[27] |
Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, et al. 2016. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Research 44:D279−D285 doi: 10.1093/nar/gkv1344 |
[28] |
Li J, Ma W, Zeng P, Wang J, Geng B, et al. 2015. LncTar: a tool for predicting the RNA targets of long noncoding RNAs. Briefings in Bioinformatics 16:806−12 doi: 10.1093/bib/bbu048 |
[29] |
Boeckmann B, Bairoch A, Apweiler R, Blatter MC, Estreicher A, et al. 2003. The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Research 31:365−70 doi: 10.1093/nar/gkg095 |
[30] |
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, et al. 2000. Gene ontology: tool for the unification of biology. Nature Genetics 25:25−29 doi: 10.1038/75556 |
[31] |
Tatusov RL, Galperin MY, Natale DA, Koonin EV. 2000. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Research 28:33−36 doi: 10.1093/nar/28.1.33 |
[32] |
Koonin EV, Fedorova ND, Jackson JD, Jacobs AR, Krylov DM, et al. 2004. A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes. Genome Biology 5:R7 doi: 10.1186/gb-2004-5-2-r7 |
[33] |
Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M. 2012. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Research 40:D109−D114 doi: 10.1093/nar/gkr988 |
[34] |
Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D, et al. 2016. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Research 44:D286−D93 doi: 10.1093/nar/gkv1248 |
[35] |
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, et al. 2013. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15−21 doi: 10.1093/bioinformatics/bts635 |
[36] |
Bray NL, Pimentel H, Melsted P, Pachter L. 2016. Near-optimal probabilistic RNA-seq quantification. Nature Biotechnology 34:525−27 doi: 10.1038/nbt.3519 |
[37] |
Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15:550 doi: 10.1186/s13059-014-0550-8 |
[38] |
Wang J, Zhang T, Shen X, Liu J, Zhao D, et al. 2016. Serum metabolomics for early diagnosis of esophageal squamous cell carcinoma by UHPLC-QTOF/MS. Metabolomics 12:116 doi: 10.1007/s11306-016-1050-5 |
[39] |
Thévenot EA, Roux A, Xu Y, Ezan E, Junot C. 2015. Analysis of the human adult urinary metabolome variations with age, body mass index, and gender by implementing a comprehensive workflow for univariate and OPLS statistical analyses. Journal of Proteome Research 14:3322−35 doi: 10.1021/acs.jproteome.5b00354 |
[40] |
Yu G, Wang L, Han Y, He Q. 2012. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS: A Journal of Integrative Biology 16:284−87 doi: 10.1089/omi.2011.0118 |
[41] |
Yu G, Xie Z, Lei S, Li H, Xu B, et al. 2022. The NAC factor LpNAL delays leaf senescence by repressing two chlorophyll catabolic genes in perennial ryegrass. Plant Physiology 189:595−610 doi: 10.1093/plphys/kiac070 |
[42] |
Shearman RC, Riordan TP, Johnson PG. 2004. Buffalograss. Warm‐Season (C4) Grasses 45:1003−26 doi: 10.2134/agronmonogr45.c31 |
[43] |
Lee JT. 2012. Epigenetic regulation by long noncoding RNAs. Science 338:1435−39 doi: 10.1126/science.1231776 |
[44] |
Di C, Yuan J, Wu Y, Li J, Lin H, et al. 2014. Characterization of stress-responsive lncRNAs in Arabidopsis thaliana by integrating expression, epigenetic and structural features. The Plant Journal 80:848−61 doi: 10.1111/tpj.12679 |
[45] |
Reddy ASN, Marquez Y, Kalyna M, Barta A. 2013. Complexity of the alternative splicing landscape in plants. The Plant Cell 25:3657−83 doi: 10.1105/tpc.113.117523 |
[46] |
Wang M, Wang P, Liang F, Ye Z, Li J, et al. 2018. A global survey of alternative splicing in allopolyploid cotton: landscape, complexity and regulation. New Phytologist 217:163−78 doi: 10.1111/nph.14762 |
[47] |
Zhou F, Xu D, Xiong S, Chen C, Liu C, et al. 2023. Transcriptomic and metabolomic profiling reveal the mechanism underlying the inhibition of wound healing by ascorbic acid in fresh-cut potato. Food Chemistry 410:135444 doi: 10.1016/j.foodchem.2023.135444 |
[48] |
Xu D, Lin H, Tang Y, Huang L, Xu J, et al. 2021. Integration of full-length transcriptomics and targeted metabolomics to identify benzylisoquinoline alkaloid biosynthetic genes in Corydalis yanhusuo. Horticulture Research 8:16 doi: 10.1038/s41438-020-00450-6 |
[49] |
Schmitt B, Vicenzi M, Garrel C, Denis FM. 2015. Effects of N-acetylcysteine, oral glutathione (GSH) and a novel sublingual form of GSH on oxidative stress markers: a comparative crossover study. Redox Biology 6:198−205 doi: 10.1016/j.redox.2015.07.012 |
[50] |
Knoop H, Gründel M, Zilliges Y, Lehmann R, Hoffmann S, et al. 2013. Flux balance analysis of cyanobacterial metabolism: the metabolic network of Synechocystis sp. PCC 6803. PLoS Computational Biology 9:e1003081 doi: 10.1371/journal.pcbi.1003081 |
[51] |
Urano K, Maruyama K, Jikumaru Y, Kamiya Y, Yamaguchi-Shinozaki K, et al. 2017. Analysis of plant hormone profiles in response to moderate dehydration stress. The Plant Journal 90:17−36 doi: 10.1111/tpj.13460 |
[52] |
Sun TP. 2008. Gibberellin metabolism, perception and signaling pathways in Arabidopsis. The Arabidopsis Book 6:e0103 doi: 10.1199/tab.0103 |
[53] |
Kieber JJ, Schaller GE. 2014. Cytokinins. The Arabidopsis Book 12:e0168 doi: 10.1199/tab.0168 |