[1]

Sun L, Huo J, Liu J, Yu J, Zhou J, et al. 2023. Anthocyanins distribution, transcriptional regulation, epigenetic and post-translational modification in fruits. Food Chemistry 411:135540

doi: 10.1016/j.foodchem.2023.135540
[2]

Jaakola L. 2013. New insights into the regulation of anthocyanin biosynthesis in fruits. Trends in Plant Science 18:477−83

doi: 10.1016/j.tplants.2013.06.003
[3]

Allan AC, Espley RV. 2018. MYBs drive novel consumer traits in fruits and vegetables. Trends in Plant Science 23:693−705

doi: 10.1016/j.tplants.2018.06.001
[4]

He M, Kong X, Jiang Y, Qu H, Zhu H. 2022. MicroRNAs: emerging regulators in horticultural crops. Trends in Plant Science 27:936−51

doi: 10.1016/j.tplants.2022.03.011
[5]

Wang F, Wang X, Zhao S, Yan J, Bu X, et al. 2020. Light regulation of anthocyanin biosynthesis in horticultural crops. Scientia Agricultura Sinica 53:4904−17

doi: 10.3864/j.issn.0578-1752.2020.23.015
[6]

Khoo HE, Azlan A, Tang ST, Lim SM. 2017. Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food & Nutrition Research 61:1361779

doi: 10.1080/16546628.2017.1361779
[7]

Albert NW, Lewis DH, Zhang H, Irving LJ, Jameson PE, et al. 2009. Light-induced vegetative anthocyanin pigmentation in Petunia. Journal of Experimental Botany 60:2191−202

doi: 10.1093/jxb/erp097
[8]

Wu T, Guo X, Zhang M, Yang L, Liu R, et al. 2017. Anthocyanins in black rice, soybean and purple corn increase fecal butyric acid and prevent liver inflammation in high fat diet-induced obese mice. Food & Function 8:3178−86

doi: 10.1039/c7fo00449d
[9]

Sunil L, Shetty NP. 2022. Biosynthesis and regulation of anthocyanin pathway genes. Applied Microbiology and Biotechnology 106:1783−98

doi: 10.1007/s00253-022-11835-z
[10]

Cappellini F, Marinelli A, Toccaceli M, Tonelli C, Petroni K. 2021. Anthocyanins: from mechanisms of regulation in plants to health benefits in foods. Frontiers in Plant Science 12:748049

doi: 10.3389/fpls.2021.748049
[11]

Cohen S, Itkin M, Yeselson Y, Tzuri G, Portnoy V, et al. 2014. The PH gene determines fruit acidity and contributes to the evolution of sweet melons. Nature Communications 5:4026

doi: 10.1038/ncomms5026
[12]

Sweetman C, Deluc LG, Cramer GR, Ford CM, Soole KL. 2009. Regulation of malate metabolism in grape berry and other developing fruits. Phytochemistry 70:1329−44

doi: 10.1016/j.phytochem.2009.08.006
[13]

Etienne A, Génard M, Lobit P, Mbeguié-A-Mbéguié D, Bugaud C. 2013. What controls fleshy fruit acidity? A review of malate and citrate accumulation in fruit cells Journal of Experimental Botany 64:1451−69

doi: 10.1093/jxb/ert035
[14]

Wu W, Chen F. 2016. Malate transportation and accumulation in fruit cell. Endocytobiosis and Cell Research 27:107−12

[15]

Huang X, Wang C, Zhao Y, Sun C, Hu D. 2021. Mechanisms and regulation of organic acid accumulation in plant vacuoles. Horticulture Research 8:227

doi: 10.1038/s41438-021-00702-z
[16]

Hussain SB, Shi C, Guo L, Kamran HM, Sadka A, et al. 2017. Recent advances in the regulation of citric acid metabolism in Citrus fruit. Critical Reviews in Plant Sciences 36:241−56

doi: 10.1080/07352689.2017.1402850
[17]

Hu D, Sun C, Ma Q, You C, Cheng L, et al. 2016. MdMYB1 regulates anthocyanin and malate accumulation by directly facilitating their transport into vacuoles in apples. Plant Physiology 170:1315−30

doi: 10.1104/pp.15.01333
[18]

Butelli E, Licciardello C, Ramadugu C, Durand-Hulak M, Celant A, et al. 2019. Noemi controls production of flavonoid pigments and fruit acidity and illustrates the domestication routes of modern Citrus varieties. Current Biology 29:158−164.E2

doi: 10.1016/j.cub.2018.11.040
[19]

Stavenga DG, Leertouwer HL, Dudek B, van der Kooi CJ. 2021. Coloration of flowers by flavonoids and consequences of pH dependent absorption. Frontiers in Plant Science 11:600124

doi: 10.3389/fpls.2020.600124
[20]

Zhou D, Li R, Zhang H, Chen S, Tu K. 2020. Hot air and UV-C treatments promote anthocyanin accumulation in peach fruit through their regulations of sugars and organic acids. Food Chemistry 309:125726

doi: 10.1016/j.foodchem.2019.125726
[21]

Yu J, Gu K, Sun C, Zhang Q, Wang J, et al. 2021. The apple bHLH transcription factor MdbHLH3 functions in determining the fruit carbohydrates and malate. Plant Biotechnology Journal 19:285−99

doi: 10.1111/pbi.13461
[22]

Xie X, Li S, Zhang R, Zhao J, Chen Y, et al. 2012. The bHLH transcription factor MdbHLH3 promotes anthocyanin accumulation and fruit colouration in response to low temperature in apples. Plant, Cell & Environment 35:1884−97

doi: 10.1111/j.1365-3040.2012.02523.x
[23]

Zhang G, Cui X, Niu J, Ma F, Li P. 2021. Visible light regulates anthocyanin synthesis via malate dehydrogenases and the ethylene signaling pathway in plum (Prunus salicina L.). Physiologia Plantarum 172:1739−49

doi: 10.1111/ppl.13383
[24]

Yoshida K, Kondo T, Okazaki Y, Katou K. 1995. Cause of blue petal colour. Nature 373:291

doi: 10.1038/373291a0
[25]

Shiratake K, Martinoia E. 2007. Transporters in fruit vacuoles. Plant Biotechnology 24:127−33

doi: 10.5511/plantbiotechnology.24.127
[26]

Tohge T, Zhang Y, Peterek S, Matros A, Rallapalli G, et al. 2015. Ectopic expression of snapdragon transcription factors facilitates the identification of genes encoding enzymes of anthocyanin decoration in tomato. The Plant Journal 83:686−704

doi: 10.1111/tpj.12920
[27]

Mol J, Grotewold E, Koes R. 1998. How genes paint flowers and seeds. Trends in Plant Science 3:212−17

doi: 10.1016/s1360-1385(98)01242-4
[28]

Faraco M, Spelt C, Bliek M, Verweij W, Hoshino A, et al. 2014. Hyperacidification of vacuoles by the combined action of two different P-ATPases in the tonoplast determines flower color. Cell Reports 6:32−43

doi: 10.1016/j.celrep.2013.12.009
[29]

Holcroft DM, Kader AA. 1999. Controlled atmosphere-induced changes in pH and organic acid metabolism may affect color of stored strawberry fruit. Postharvest Biology and Technology 17:19−32

doi: 10.1016/S0925-5214(99)00023-X
[30]

Lu Z, Huang Y, Mao S, Wu F, Liu Y, et al. 2022. The high-quality genome of pummelo provides insights into the tissue-specific regulation of citric acid and anthocyanin during domestication. Horticulture Research 9:uhac175

doi: 10.1093/hr/uhac175
[31]

Igamberdiev AU, Hurry V, Krömer S, Gardeström P. 1998. The role of mitochondrial electron transport during photosynthetic induction. A study with barley (Hordeum vulgare) protoplasts incubated with rotenone and oligomycin. Physiologia Plantarum 104:431−39

doi: 10.1034/j.1399-3054.1998.1040319.x
[32]

Selinski J, Scheibe R. 2019. Malate valves: old shuttles with new perspectives. Plant Biology 21:21−30

doi: 10.1111/plb.12869
[33]

Sun T, Xu L, Sun H, Yue Q, Zhai H, et al. 2017. VvVHP1; 2 is transcriptionally activated by VvMYBA1 and promotes anthocyanin accumulation of grape berry skins via glucose signal. Frontiers in Plant Science 8:1811

doi: 10.3389/fpls.2017.01811
[34]

Strazzer P, Spelt CE, Li S, Bliek M, Federici CT, et al. 2019. Hyperacidification of Citrus fruits by a vacuolar proton-pumping P-ATPase complex. Nature Communications 10:744

doi: 10.1038/s41467-019-08516-3
[35]

Alabd A, Ahmad M, Zhang X, Gao Y, Peng L, et al. 2022. Light-responsive transcription factor PpWRKY44 induces anthocyanin accumulation by regulating PpMYB10 expression in pear. Horticulture Research 9:uhac199

doi: 10.1093/hr/uhac199
[36]

Alabd A, Cheng H, Ahmad M, Wu X, Peng L, et al. 2023. ABRE-BINDING FACTOR3-WRKY DNA-BINDING PROTEIN44 module promotes salinity-induced malate accumulation in pear. Plant Physiology 192:1982−96

doi: 10.1093/plphys/kiad168
[37]

Hassani D, Fu X, Shen Q, Khalid M, Rose JKC, et al. 2020. Parallel transcriptional regulation of artemisinin and flavonoid biosynthesis. Trends in Plant Science 25:466−76

doi: 10.1016/j.tplants.2020.01.001
[38]

Wang B, Luo Q, Li Y, Du K, Wu Z, et al. 2022. Structural insights into partner selection for MYB and bHLH transcription factor complexes. Nature Plants 8:1108−17

doi: 10.1038/s41477-022-01223-w
[39]

Ma CZ, Brent MR. 2021. Inferring TF activities and activity regulators from gene expression data with constraints from TF perturbation data. Bioinformatics 37:1234−45

doi: 10.1093/bioinformatics/btaa947
[40]

Weidemüller P, Kholmatov M, Petsalaki E, Zaugg JB. 2021. Transcription factors: bridge between cell signaling and gene regulation. Proteomics 21:2000034

doi: 10.1002/pmic.202000034
[41]

Bai S, Tao R, Yin L, Ni J, Yang Q, et al. 2019. Two B-box proteins, PpBBX18 and PpBBX21, antagonistically regulate anthocyanin biosynthesis via competitive association with Pyrus pyrifolia ELONGATED HYPOCOTYL 5 in the peel of pear fruit. The Plant Journal 100:1208−23

doi: 10.1111/tpj.14510
[42]

Tao R, Yu W, Gao Y, Ni J, Yin L, et al. 2020. Light-induced basic/helix-loop-helix64 enhances anthocyanin biosynthesis and undergoes CONSTITUTIVELY PHOTOMORPHOGENIC1-mediated degradation in pear. Plant Physiology 184:1684−701

doi: 10.1104/pp.20.01188
[43]

Ni J, Premathilake AT, Gao Y, Yu W, Tao R, et al. 2021. Ethylene-activated PpERF105 induces the expression of the repressor-type R2R3-MYB gene PpMYB140 to inhibit anthocyanin biosynthesis in red pear fruit. The Plant Journal 105:167−81

doi: 10.1111/tpj.15049
[44]

Zhang L, Ma B, Wang C, Chen X, Ruan YL, et al. 2022. MdWRKY126 modulates malate accumulation in apple fruit by regulating cytosolic malate dehydrogenase (MdMDH5). Plant Physiology 188:2059−72

doi: 10.1093/plphys/kiac023
[45]

Berardi AE, Esfeld K, Jäggi L, Mandel T, Cannarozzi GM, et al. 2021. Complex evolution of novel red floral color in Petunia. The Plant Cell 33:2273−95

doi: 10.1093/plcell/koab114
[46]

Lai B, Du L, Hu B, Wang D, Huang X, et al. 2019. Characterization of a novel litchi R2R3-MYB transcription factor that involves in anthocyanin biosynthesis and tissue acidification. BMC Plant Biology 19:62

doi: 10.1186/s12870-019-1658-5
[47]

He J, Xu Y, Huang D, Fu J, Liu Z, et al. 2022. TRIPTYCHON-LIKE regulates aspects of both fruit flavor and color in citrus. Journal of Experimental Botany 73:3610−24

doi: 10.1093/jxb/erac069
[48]

Spelt C, Quattrocchio F, Mol J, Koes R. 2002. ANTHOCYANIN1 of Petunia controls pigment synthesis, vacuolar pH, and seed coat development by genetically distinct mechanisms. The Plant Cell 14:2121−35

doi: 10.1105/tpc.003772
[49]

Amato A, Cavallini E, Zenoni S, Finezzo L, Begheldo M, et al. 2016. A grapevine TTG2-like WRKY transcription factor is involved in regulating vacuolar transport and flavonoid biosynthesis. Frontiers in Plant Science 7:1979

doi: 10.3389/fpls.2016.01979
[50]

Li S, Yin X, Xie X, Allan AC, Ge H, et al. 2016. The Citrus transcription factor, CitERF13, regulates citric acid accumulation via a protein-protein interaction with the vacuolar proton pump, CitVHA-c4. Scientific Reports 6:20151

doi: 10.1038/srep20151
[51]

Yin X, Xie X, Xia X, Yu J, Ferguson IB, et al. 2016. Involvement of an ethylene response factor in chlorophyll degradation during citrus fruit degreening. The Plant Journal 86:403−12

doi: 10.1111/tpj.13178
[52]

Liu J, Osbourn A, Ma P. 2015. MYB transcription factors as regulators of phenylpropanoid metabolism in plants. Molecular Plant 8:689−708

doi: 10.1016/j.molp.2015.03.012
[53]

Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, et al. 2010. MYB transcription factors in Arabidopsis. Trends in Plant Science 15:573−81

doi: 10.1016/j.tplants.2010.06.005
[54]

Ramsay NA, Glover BJ. 2005. MYB-bHLH-WD40 protein complex and the evolution of cellular diversity. Trends in Plant Science 10:63−70

doi: 10.1016/j.tplants.2004.12.011
[55]

Stracke R, Ishihara H, Huep G, Barsch A, Mehrtens F, et al. 2007. Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. The Plant Journal 50:660−77

doi: 10.1111/j.1365-313X.2007.03078.x
[56]

Yang J, Chen Y, Xiao Z, Shen H, Li Y, et al. 2022. Multilevel regulation of anthocyanin-promoting R2R3-MYB transcription factors in plants. Frontiers in Plant Science 13:1008829

doi: 10.3389/fpls.2022.1008829
[57]

Allan AC, Hellens RP, Laing WA. 2008. MYB transcription factors that colour our fruit. Trends in Plant Science 13:99−102

doi: 10.1016/j.tplants.2007.11.012
[58]

Liu H, Liu Z, Wu Y, Zheng L, Zhang G. 2021. Regulatory mechanisms of anthocyanin biosynthesis in apple and pear. International Journal of Molecular Sciences 22:8441

doi: 10.3390/ijms22168441
[59]

Jia D, Wu P, Shen F, Li W, Zheng X, et al. 2021. Genetic variation in the promoter of an R2R3−MYB transcription factor determines fruit malate content in apple (Malus domestica Borkh.). Plant Physiology 186:549−68

doi: 10.1093/plphys/kiab098
[60]

Meng J, Wei J, Chi R, Qiao Y, Zhou J, et al. 2022. MrMYB44-like negatively regulates anthocyanin biosynthesis and causes spring leaf color of Malus 'Radiant' to fade from red to green. Frontiers in Plant Science 13:822340

doi: 10.3389/fpls.2022.822340
[61]

Toledo-Ortiz G, Huq E, Quail PH. 2003. The Arabidopsis basic/helix-loop-helix transcription factor family. The Plant Cell 15:1749−70

doi: 10.1105/tpc.013839
[62]

Zhang T, Xu H, Yang G, Wang N, Zhang J, et al. 2019. Molecular mechanism of MYB111 and WRKY40 involved in anthocyanin biosynthesis in red-fleshed apple callus. Plant Cell, Tissue and Organ Culture (PCTOC) 139:467−78

doi: 10.1007/s11240-019-01637-z
[63]

Lin L, Yuan K, Huang Y, Dong H, Qiao Q, et al. 2022. A WRKY transcription factor PbWRKY40 from Pyrus betulaefolia functions positively in salt tolerance and modulating organic acid accumulation by regulating PbVHA-B1 expression. Environmental and Experimental Botany 196:104782

doi: 10.1016/j.envexpbot.2022.104782
[64]

Li Y, Mao K, Zhao C, Zhao X, Zhang H, et al. 2012. MdCOP1 ubiquitin E3 ligases interact with MdMYB1 to regulate light-induced anthocyanin biosynthesis and red fruit coloration in apple. Plant Physiology 160:1011−22

doi: 10.1104/pp.112.199703
[65]

Wang X, An J, Liu X, Su L, You C, et al. 2018. The nitrate-responsive protein MdBT2 regulates anthocyanin biosynthesis by interacting with the MdMYB1 transcription factor. Plant Physiology 178:890−906

doi: 10.1104/pp.18.00244
[66]

Zhang Q, Gu K, Wang J, Yu J, Wang X, et al. 2020. BTB-BACK-TAZ domain protein MdBT2-mediated MdMYB73 ubiquitination negatively regulates malate accumulation and vacuolar acidification in apple. Horticulture Research 7:151

doi: 10.1038/s41438-020-00384-z
[67]

Zhang Q, Gu K, Cheng L, Wang J, Yu J, et al. 2020. BTB-TAZ domain protein MdBT2 modulates malate accumulation and vacuolar acidification in response to nitrate. Plant Physiology 183:750−64

doi: 10.1104/pp.20.00208
[68]

Hu D, Yu J, Han P, Xie X, Sun C, et al. 2019. The regulatory module MdPUB29-MdbHLH3 connects ethylene biosynthesis with fruit quality in apple. New Phytologist 221:1966−82

doi: 10.1111/nph.15511
[69]

Hu D, Sun C, Zhang Q, An J, You C, et al. 2016. Glucose sensor MdHXK1 phosphorylates and stabilizes MdbHLH3 to promote anthocyanin biosynthesis in apple. PLoS Genetics 12:e1006273

doi: 10.1371/journal.pgen.1006273
[70]

Liu X, An X, Liu X, Hu D, Wang X, et al. 2017. MdSnRK1.1 interacts with MdJAZ18 to regulate sucrose-induced anthocyanin and proanthocyanidin accumulation in apple. Journal of Experimental Botany 68:2977−90

doi: 10.1093/jxb/erx150
[71]

Zhou L, Zhang C, Zhang R, Wang G, Li Y, et al. 2019. The SUMO E3 ligase MdSIZ1 targets MdbHLH104 to regulate plasma membrane H+-ATPase activity and iron homeostasis. Plant Physiology 179:88−106

doi: 10.1104/pp.18.00289
[72]

Zhou L, Li Y, Zhang R, Zhang C, Xie X, et al. 2017. The small ubiquitin-like modifier E3 ligase MdSIZ1 promotes anthocyanin accumulation by sumoylating MdMYB1 under low-temperature conditions in apple. Plant, Cell & Environment 40:2068−80

doi: 10.1111/pce.12978
[73]

Amato A, Cavallini E, Walker AR, Pezzotti M, Bliek M, et al. 2019. The MYB5-driven MBW complex recruits a WRKY factor to enhance the expression of targets involved in vacuolar hyper-acidification and trafficking in grapevine. The Plant Journal 99:1220−41

doi: 10.1111/tpj.14419
[74]

Wege S. 2020. Sweet or sour? Important link between nitrate signaling and malate accumulation identified in apple Plant Physiology 183:439−40

doi: 10.1104/pp.20.00535
[75]

Kui LW, Micheletti D, Palmer J, Volz R, Lozano L, et al. 2011. High temperature reduces apple fruit colour via modulation of the anthocyanin regulatory complex. Plant, Cell & Environment 34:1176−90

doi: 10.1111/j.1365-3040.2011.02316.x
[76]

Reay PF. 1999. The role of low temperatures in the development of the red blush on apple fruit ('Granny Smith'). Scientia Horticulturae 79:113−19

doi: 10.1016/S0304-4238(98)00197-6
[77]

Steyn WJ, Wand SJE, Jacobs G, Rosecrance RC, Roberts SC. 2009. Evidence for a photoprotective function of low-temperature-induced anthocyanin accumulation in apple and pear peel. Physiologia Plantarum 136:461−72

doi: 10.1111/j.1399-3054.2009.01246.x
[78]

Wu J, Zhao G, Yang Y, Le W, Khan MA, et al. 2013. Identification of differentially expressed genes related to coloration in red/green mutant pear (Pyrus communis L.). Tree Genetics & Genomes 9:75−83

doi: 10.1007/s11295-012-0534-3
[79]

Kumar A, Sharma DP, Kumar P, Sharma G, Suprun II. 2022. Comprehensive insights on Apple (Malus × domestica Borkh.) bud sport mutations and epigenetic regulations. Scientia Horticulturae 297:110979

doi: 10.1016/j.scienta.2022.110979
[80]

Ma L, Shi YN, Grierson D, Chen KS. 2020. Research advance in regulation of fruit quality characteristics by microRNAs. Food Quality and Safety 4:1−8

doi: 10.1093/fqsafe/fyz039
[81]

Chen C, Zeng Z, Liu Z, Xia R. 2018. Small RNAs, emerging regulators critical for the development of horticultural traits. Horticulture Research 5:63

doi: 10.1038/s41438-018-0072-8